| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omex2 | GIF version | ||
| Description: Using bounded set induction and the strong axiom of infinity, ω is a set, that is, we recover ax-infvn 16304 (see bj-2inf 16301 for the equivalence of the latter with bj-omex 16305). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-omex2 | ⊢ ω ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-inf2 16339 | . . 3 ⊢ ∃𝑎∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) | |
| 2 | vex 2802 | . . . 4 ⊢ 𝑎 ∈ V | |
| 3 | bdcv 16211 | . . . . 5 ⊢ BOUNDED 𝑎 | |
| 4 | 3 | bj-inf2vn 16337 | . . . 4 ⊢ (𝑎 ∈ V → (∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) → 𝑎 = ω)) |
| 5 | 2, 4 | ax-mp 5 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) → 𝑎 = ω) |
| 6 | 1, 5 | eximii 1648 | . 2 ⊢ ∃𝑎 𝑎 = ω |
| 7 | 6 | issetri 2809 | 1 ⊢ ω ∈ V |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 713 ∀wal 1393 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 Vcvv 2799 ∅c0 3491 suc csuc 4456 ωcom 4682 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-nul 4210 ax-pr 4293 ax-un 4524 ax-bd0 16176 ax-bdim 16177 ax-bdor 16179 ax-bdex 16182 ax-bdeq 16183 ax-bdel 16184 ax-bdsb 16185 ax-bdsep 16247 ax-bdsetind 16331 ax-inf2 16339 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-suc 4462 df-iom 4683 df-bdc 16204 df-bj-ind 16290 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |