Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omex2 GIF version

Theorem bj-omex2 13859
Description: Using bounded set induction and the strong axiom of infinity, ω is a set, that is, we recover ax-infvn 13823 (see bj-2inf 13820 for the equivalence of the latter with bj-omex 13824). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-omex2 ω ∈ V

Proof of Theorem bj-omex2
Dummy variables 𝑥 𝑦 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-inf2 13858 . . 3 𝑎𝑥(𝑥𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦𝑎 𝑥 = suc 𝑦))
2 vex 2729 . . . 4 𝑎 ∈ V
3 bdcv 13730 . . . . 5 BOUNDED 𝑎
43bj-inf2vn 13856 . . . 4 (𝑎 ∈ V → (∀𝑥(𝑥𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦𝑎 𝑥 = suc 𝑦)) → 𝑎 = ω))
52, 4ax-mp 5 . . 3 (∀𝑥(𝑥𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦𝑎 𝑥 = suc 𝑦)) → 𝑎 = ω)
61, 5eximii 1590 . 2 𝑎 𝑎 = ω
76issetri 2735 1 ω ∈ V
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wo 698  wal 1341   = wceq 1343  wcel 2136  wrex 2445  Vcvv 2726  c0 3409  suc csuc 4343  ωcom 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-nul 4108  ax-pr 4187  ax-un 4411  ax-bd0 13695  ax-bdim 13696  ax-bdor 13698  ax-bdex 13701  ax-bdeq 13702  ax-bdel 13703  ax-bdsb 13704  ax-bdsep 13766  ax-bdsetind 13850  ax-inf2 13858
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-suc 4349  df-iom 4568  df-bdc 13723  df-bj-ind 13809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator