![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omex2 | GIF version |
Description: Using bounded set induction and the strong axiom of infinity, ω is a set, that is, we recover ax-infvn 11836 (see bj-2inf 11833 for the equivalence of the latter with bj-omex 11837). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-omex2 | ⊢ ω ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-inf2 11871 | . . 3 ⊢ ∃𝑎∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) | |
2 | vex 2622 | . . . 4 ⊢ 𝑎 ∈ V | |
3 | bdcv 11739 | . . . . 5 ⊢ BOUNDED 𝑎 | |
4 | 3 | bj-inf2vn 11869 | . . . 4 ⊢ (𝑎 ∈ V → (∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) → 𝑎 = ω)) |
5 | 2, 4 | ax-mp 7 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) → 𝑎 = ω) |
6 | 1, 5 | eximii 1538 | . 2 ⊢ ∃𝑎 𝑎 = ω |
7 | 6 | issetri 2628 | 1 ⊢ ω ∈ V |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∨ wo 664 ∀wal 1287 = wceq 1289 ∈ wcel 1438 ∃wrex 2360 Vcvv 2619 ∅c0 3286 suc csuc 4192 ωcom 4405 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-nul 3965 ax-pr 4036 ax-un 4260 ax-bd0 11704 ax-bdim 11705 ax-bdor 11707 ax-bdex 11710 ax-bdeq 11711 ax-bdel 11712 ax-bdsb 11713 ax-bdsep 11775 ax-bdsetind 11863 ax-inf2 11871 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-rab 2368 df-v 2621 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-sn 3452 df-pr 3453 df-uni 3654 df-int 3689 df-suc 4198 df-iom 4406 df-bdc 11732 df-bj-ind 11822 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |