Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omex2 | GIF version |
Description: Using bounded set induction and the strong axiom of infinity, ω is a set, that is, we recover ax-infvn 13823 (see bj-2inf 13820 for the equivalence of the latter with bj-omex 13824). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-omex2 | ⊢ ω ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-inf2 13858 | . . 3 ⊢ ∃𝑎∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) | |
2 | vex 2729 | . . . 4 ⊢ 𝑎 ∈ V | |
3 | bdcv 13730 | . . . . 5 ⊢ BOUNDED 𝑎 | |
4 | 3 | bj-inf2vn 13856 | . . . 4 ⊢ (𝑎 ∈ V → (∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) → 𝑎 = ω)) |
5 | 2, 4 | ax-mp 5 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) → 𝑎 = ω) |
6 | 1, 5 | eximii 1590 | . 2 ⊢ ∃𝑎 𝑎 = ω |
7 | 6 | issetri 2735 | 1 ⊢ ω ∈ V |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 698 ∀wal 1341 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 Vcvv 2726 ∅c0 3409 suc csuc 4343 ωcom 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-nul 4108 ax-pr 4187 ax-un 4411 ax-bd0 13695 ax-bdim 13696 ax-bdor 13698 ax-bdex 13701 ax-bdeq 13702 ax-bdel 13703 ax-bdsb 13704 ax-bdsep 13766 ax-bdsetind 13850 ax-inf2 13858 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 df-bdc 13723 df-bj-ind 13809 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |