| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omex2 | GIF version | ||
| Description: Using bounded set induction and the strong axiom of infinity, ω is a set, that is, we recover ax-infvn 15877 (see bj-2inf 15874 for the equivalence of the latter with bj-omex 15878). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-omex2 | ⊢ ω ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-inf2 15912 | . . 3 ⊢ ∃𝑎∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) | |
| 2 | vex 2775 | . . . 4 ⊢ 𝑎 ∈ V | |
| 3 | bdcv 15784 | . . . . 5 ⊢ BOUNDED 𝑎 | |
| 4 | 3 | bj-inf2vn 15910 | . . . 4 ⊢ (𝑎 ∈ V → (∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) → 𝑎 = ω)) |
| 5 | 2, 4 | ax-mp 5 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) → 𝑎 = ω) |
| 6 | 1, 5 | eximii 1625 | . 2 ⊢ ∃𝑎 𝑎 = ω |
| 7 | 6 | issetri 2781 | 1 ⊢ ω ∈ V |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 710 ∀wal 1371 = wceq 1373 ∈ wcel 2176 ∃wrex 2485 Vcvv 2772 ∅c0 3460 suc csuc 4412 ωcom 4638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-nul 4170 ax-pr 4253 ax-un 4480 ax-bd0 15749 ax-bdim 15750 ax-bdor 15752 ax-bdex 15755 ax-bdeq 15756 ax-bdel 15757 ax-bdsb 15758 ax-bdsep 15820 ax-bdsetind 15904 ax-inf2 15912 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-suc 4418 df-iom 4639 df-bdc 15777 df-bj-ind 15863 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |