| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omex2 | GIF version | ||
| Description: Using bounded set induction and the strong axiom of infinity, ω is a set, that is, we recover ax-infvn 15587 (see bj-2inf 15584 for the equivalence of the latter with bj-omex 15588). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-omex2 | ⊢ ω ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-inf2 15622 | . . 3 ⊢ ∃𝑎∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) | |
| 2 | vex 2766 | . . . 4 ⊢ 𝑎 ∈ V | |
| 3 | bdcv 15494 | . . . . 5 ⊢ BOUNDED 𝑎 | |
| 4 | 3 | bj-inf2vn 15620 | . . . 4 ⊢ (𝑎 ∈ V → (∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) → 𝑎 = ω)) |
| 5 | 2, 4 | ax-mp 5 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) → 𝑎 = ω) |
| 6 | 1, 5 | eximii 1616 | . 2 ⊢ ∃𝑎 𝑎 = ω |
| 7 | 6 | issetri 2772 | 1 ⊢ ω ∈ V |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 ∀wal 1362 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 Vcvv 2763 ∅c0 3450 suc csuc 4400 ωcom 4626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-nul 4159 ax-pr 4242 ax-un 4468 ax-bd0 15459 ax-bdim 15460 ax-bdor 15462 ax-bdex 15465 ax-bdeq 15466 ax-bdel 15467 ax-bdsb 15468 ax-bdsep 15530 ax-bdsetind 15614 ax-inf2 15622 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-suc 4406 df-iom 4627 df-bdc 15487 df-bj-ind 15573 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |