Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omex2 GIF version

Theorem bj-omex2 15469
Description: Using bounded set induction and the strong axiom of infinity, ω is a set, that is, we recover ax-infvn 15433 (see bj-2inf 15430 for the equivalence of the latter with bj-omex 15434). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-omex2 ω ∈ V

Proof of Theorem bj-omex2
Dummy variables 𝑥 𝑦 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-inf2 15468 . . 3 𝑎𝑥(𝑥𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦𝑎 𝑥 = suc 𝑦))
2 vex 2763 . . . 4 𝑎 ∈ V
3 bdcv 15340 . . . . 5 BOUNDED 𝑎
43bj-inf2vn 15466 . . . 4 (𝑎 ∈ V → (∀𝑥(𝑥𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦𝑎 𝑥 = suc 𝑦)) → 𝑎 = ω))
52, 4ax-mp 5 . . 3 (∀𝑥(𝑥𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦𝑎 𝑥 = suc 𝑦)) → 𝑎 = ω)
61, 5eximii 1613 . 2 𝑎 𝑎 = ω
76issetri 2769 1 ω ∈ V
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 709  wal 1362   = wceq 1364  wcel 2164  wrex 2473  Vcvv 2760  c0 3446  suc csuc 4396  ωcom 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-nul 4155  ax-pr 4238  ax-un 4464  ax-bd0 15305  ax-bdim 15306  ax-bdor 15308  ax-bdex 15311  ax-bdeq 15312  ax-bdel 15313  ax-bdsb 15314  ax-bdsep 15376  ax-bdsetind 15460  ax-inf2 15468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871  df-suc 4402  df-iom 4623  df-bdc 15333  df-bj-ind 15419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator