Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omex2 GIF version

Theorem bj-omex2 14012
Description: Using bounded set induction and the strong axiom of infinity, ω is a set, that is, we recover ax-infvn 13976 (see bj-2inf 13973 for the equivalence of the latter with bj-omex 13977). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-omex2 ω ∈ V

Proof of Theorem bj-omex2
Dummy variables 𝑥 𝑦 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-inf2 14011 . . 3 𝑎𝑥(𝑥𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦𝑎 𝑥 = suc 𝑦))
2 vex 2733 . . . 4 𝑎 ∈ V
3 bdcv 13883 . . . . 5 BOUNDED 𝑎
43bj-inf2vn 14009 . . . 4 (𝑎 ∈ V → (∀𝑥(𝑥𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦𝑎 𝑥 = suc 𝑦)) → 𝑎 = ω))
52, 4ax-mp 5 . . 3 (∀𝑥(𝑥𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦𝑎 𝑥 = suc 𝑦)) → 𝑎 = ω)
61, 5eximii 1595 . 2 𝑎 𝑎 = ω
76issetri 2739 1 ω ∈ V
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wo 703  wal 1346   = wceq 1348  wcel 2141  wrex 2449  Vcvv 2730  c0 3414  suc csuc 4350  ωcom 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-nul 4115  ax-pr 4194  ax-un 4418  ax-bd0 13848  ax-bdim 13849  ax-bdor 13851  ax-bdex 13854  ax-bdeq 13855  ax-bdel 13856  ax-bdsb 13857  ax-bdsep 13919  ax-bdsetind 14003  ax-inf2 14011
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-suc 4356  df-iom 4575  df-bdc 13876  df-bj-ind 13962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator