![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omex2 | GIF version |
Description: Using bounded set induction and the strong axiom of infinity, ω is a set, that is, we recover ax-infvn 14732 (see bj-2inf 14729 for the equivalence of the latter with bj-omex 14733). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-omex2 | ⊢ ω ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-inf2 14767 | . . 3 ⊢ ∃𝑎∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) | |
2 | vex 2742 | . . . 4 ⊢ 𝑎 ∈ V | |
3 | bdcv 14639 | . . . . 5 ⊢ BOUNDED 𝑎 | |
4 | 3 | bj-inf2vn 14765 | . . . 4 ⊢ (𝑎 ∈ V → (∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) → 𝑎 = ω)) |
5 | 2, 4 | ax-mp 5 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) → 𝑎 = ω) |
6 | 1, 5 | eximii 1602 | . 2 ⊢ ∃𝑎 𝑎 = ω |
7 | 6 | issetri 2748 | 1 ⊢ ω ∈ V |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 708 ∀wal 1351 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 Vcvv 2739 ∅c0 3424 suc csuc 4367 ωcom 4591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-nul 4131 ax-pr 4211 ax-un 4435 ax-bd0 14604 ax-bdim 14605 ax-bdor 14607 ax-bdex 14610 ax-bdeq 14611 ax-bdel 14612 ax-bdsb 14613 ax-bdsep 14675 ax-bdsetind 14759 ax-inf2 14767 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-sn 3600 df-pr 3601 df-uni 3812 df-int 3847 df-suc 4373 df-iom 4592 df-bdc 14632 df-bj-ind 14718 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |