| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcl | GIF version | ||
| Description: Alias for ax-mulcl 8105, for naming consistency with mulcli 8159. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulcl 8105 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 · cmul 8012 |
| This theorem was proved from axioms: ax-mulcl 8105 |
| This theorem is referenced by: mpomulf 8144 0cn 8146 mulrid 8151 mulcli 8159 mulcld 8175 mul31 8285 mul4 8286 muladd11r 8310 cnegexlem2 8330 cnegex 8332 muladd 8538 subdi 8539 mul02 8541 submul2 8553 mulsub 8555 recextlem1 8806 recexap 8808 muleqadd 8823 divassap 8845 divmulassap 8850 divmuldivap 8867 divmuleqap 8872 divadddivap 8882 conjmulap 8884 cju 9116 ofnegsub 9117 zneo 9556 exp3vallem 10770 exp3val 10771 exp1 10775 expp1 10776 expcl 10787 expclzaplem 10793 mulexp 10808 sqcl 10830 subsq 10876 subsq2 10877 binom2sub 10883 mulbinom2 10886 binom3 10887 zesq 10888 bernneq 10890 bernneq2 10891 mulsubdivbinom2ap 10941 facnn 10957 fac0 10958 fac1 10959 facp1 10960 bcval5 10993 bcn2 10994 reim 11371 imcl 11373 crre 11376 crim 11377 remim 11379 mulreap 11383 cjreb 11385 recj 11386 reneg 11387 readd 11388 remullem 11390 remul2 11392 imcj 11394 imneg 11395 imadd 11396 immul2 11399 cjadd 11403 ipcnval 11405 cjmulrcl 11406 cjneg 11409 imval2 11413 cjreim 11422 rennim 11521 sqabsadd 11574 sqabssub 11575 absreimsq 11586 absreim 11587 absmul 11588 mul0inf 11760 mulcn2 11831 climmul 11846 isermulc2 11859 fsummulc2 11967 prodf 12057 clim2prod 12058 clim2divap 12059 prod3fmul 12060 prodf1 12061 prodfap0 12064 prodfrecap 12065 prodrbdclem 12090 fproddccvg 12091 prodmodclem3 12094 prodmodclem2a 12095 zproddc 12098 fprodseq 12102 fprodntrivap 12103 prodsnf 12111 fprodcl 12126 fprodclf 12154 efexp 12201 sinf 12223 cosf 12224 tanval2ap 12232 tanval3ap 12233 resinval 12234 recosval 12235 efi4p 12236 resin4p 12237 recos4p 12238 resincl 12239 recoscl 12240 sinneg 12245 cosneg 12246 efival 12251 efmival 12252 efeul 12253 sinadd 12255 cosadd 12256 sinsub 12259 cossub 12260 subsin 12262 sinmul 12263 cosmul 12264 addcos 12265 subcos 12266 cos2tsin 12270 ef01bndlem 12275 sin01bnd 12276 cos01bnd 12277 absef 12289 absefib 12290 efieq1re 12291 demoivre 12292 demoivreALT 12293 odd2np1lem 12391 odd2np1 12392 opoe 12414 omoe 12415 opeo 12416 omeo 12417 modgcd 12520 qredeq 12626 modprm0 12785 pythagtriplem1 12796 pythagtriplem12 12806 pythagtriplem14 12808 gzmulcl 12909 4sqlem11 12932 4sqlem17 12938 cncrng 14541 cnfldmulg 14548 mpomulcn 15248 mulc1cncf 15271 mulcncflem 15289 dvmulxxbr 15384 dvmulxx 15386 dvimulf 15388 plymullem1 15430 plymulcl 15437 plysubcl 15438 efper 15489 sinperlem 15490 sin2kpi 15493 cos2kpi 15494 efimpi 15501 sincosq1eq 15521 abssinper 15528 sinkpi 15529 coskpi 15530 binom4 15661 fsumdvdsmul 15673 lgsdilem2 15723 lgsne0 15725 lgsquadlem1 15764 2sqlem2 15802 |
| Copyright terms: Public domain | W3C validator |