![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulcl | GIF version |
Description: Alias for ax-mulcl 7970, for naming consistency with mulcli 8024. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulcl 7970 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 · cmul 7877 |
This theorem was proved from axioms: ax-mulcl 7970 |
This theorem is referenced by: mpomulf 8009 0cn 8011 mulrid 8016 mulcli 8024 mulcld 8040 mul31 8150 mul4 8151 muladd11r 8175 cnegexlem2 8195 cnegex 8197 muladd 8403 subdi 8404 mul02 8406 submul2 8418 mulsub 8420 recextlem1 8670 recexap 8672 muleqadd 8687 divassap 8709 divmulassap 8714 divmuldivap 8731 divmuleqap 8736 divadddivap 8746 conjmulap 8748 cju 8980 ofnegsub 8981 zneo 9418 exp3vallem 10611 exp3val 10612 exp1 10616 expp1 10617 expcl 10628 expclzaplem 10634 mulexp 10649 sqcl 10671 subsq 10717 subsq2 10718 binom2sub 10724 mulbinom2 10727 binom3 10728 zesq 10729 bernneq 10731 bernneq2 10732 mulsubdivbinom2ap 10782 facnn 10798 fac0 10799 fac1 10800 facp1 10801 bcval5 10834 bcn2 10835 reim 10996 imcl 10998 crre 11001 crim 11002 remim 11004 mulreap 11008 cjreb 11010 recj 11011 reneg 11012 readd 11013 remullem 11015 remul2 11017 imcj 11019 imneg 11020 imadd 11021 immul2 11024 cjadd 11028 ipcnval 11030 cjmulrcl 11031 cjneg 11034 imval2 11038 cjreim 11047 rennim 11146 sqabsadd 11199 sqabssub 11200 absreimsq 11211 absreim 11212 absmul 11213 mul0inf 11384 mulcn2 11455 climmul 11470 isermulc2 11483 fsummulc2 11591 prodf 11681 clim2prod 11682 clim2divap 11683 prod3fmul 11684 prodf1 11685 prodfap0 11688 prodfrecap 11689 prodrbdclem 11714 fproddccvg 11715 prodmodclem3 11718 prodmodclem2a 11719 zproddc 11722 fprodseq 11726 fprodntrivap 11727 prodsnf 11735 fprodcl 11750 fprodclf 11778 efexp 11825 sinf 11847 cosf 11848 tanval2ap 11856 tanval3ap 11857 resinval 11858 recosval 11859 efi4p 11860 resin4p 11861 recos4p 11862 resincl 11863 recoscl 11864 sinneg 11869 cosneg 11870 efival 11875 efmival 11876 efeul 11877 sinadd 11879 cosadd 11880 sinsub 11883 cossub 11884 subsin 11886 sinmul 11887 cosmul 11888 addcos 11889 subcos 11890 cos2tsin 11894 ef01bndlem 11899 sin01bnd 11900 cos01bnd 11901 absef 11913 absefib 11914 efieq1re 11915 demoivre 11916 demoivreALT 11917 odd2np1lem 12013 odd2np1 12014 opoe 12036 omoe 12037 opeo 12038 omeo 12039 modgcd 12128 qredeq 12234 modprm0 12392 pythagtriplem1 12403 pythagtriplem12 12413 pythagtriplem14 12415 gzmulcl 12516 4sqlem11 12539 4sqlem17 12545 cncrng 14057 cnfldmulg 14064 mulc1cncf 14744 mulcncflem 14761 dvmulxxbr 14851 dvmulxx 14853 dvimulf 14855 plymullem1 14894 plymulcl 14901 plysubcl 14902 efper 14942 sinperlem 14943 sin2kpi 14946 cos2kpi 14947 efimpi 14954 sincosq1eq 14974 abssinper 14981 sinkpi 14982 coskpi 14983 binom4 15111 lgsdilem2 15152 lgsne0 15154 lgsquadlem1 15191 2sqlem2 15202 |
Copyright terms: Public domain | W3C validator |