| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcl | GIF version | ||
| Description: Alias for ax-mulcl 8036, for naming consistency with mulcli 8090. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulcl 8036 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 (class class class)co 5954 ℂcc 7936 · cmul 7943 |
| This theorem was proved from axioms: ax-mulcl 8036 |
| This theorem is referenced by: mpomulf 8075 0cn 8077 mulrid 8082 mulcli 8090 mulcld 8106 mul31 8216 mul4 8217 muladd11r 8241 cnegexlem2 8261 cnegex 8263 muladd 8469 subdi 8470 mul02 8472 submul2 8484 mulsub 8486 recextlem1 8737 recexap 8739 muleqadd 8754 divassap 8776 divmulassap 8781 divmuldivap 8798 divmuleqap 8803 divadddivap 8813 conjmulap 8815 cju 9047 ofnegsub 9048 zneo 9487 exp3vallem 10698 exp3val 10699 exp1 10703 expp1 10704 expcl 10715 expclzaplem 10721 mulexp 10736 sqcl 10758 subsq 10804 subsq2 10805 binom2sub 10811 mulbinom2 10814 binom3 10815 zesq 10816 bernneq 10818 bernneq2 10819 mulsubdivbinom2ap 10869 facnn 10885 fac0 10886 fac1 10887 facp1 10888 bcval5 10921 bcn2 10922 reim 11213 imcl 11215 crre 11218 crim 11219 remim 11221 mulreap 11225 cjreb 11227 recj 11228 reneg 11229 readd 11230 remullem 11232 remul2 11234 imcj 11236 imneg 11237 imadd 11238 immul2 11241 cjadd 11245 ipcnval 11247 cjmulrcl 11248 cjneg 11251 imval2 11255 cjreim 11264 rennim 11363 sqabsadd 11416 sqabssub 11417 absreimsq 11428 absreim 11429 absmul 11430 mul0inf 11602 mulcn2 11673 climmul 11688 isermulc2 11701 fsummulc2 11809 prodf 11899 clim2prod 11900 clim2divap 11901 prod3fmul 11902 prodf1 11903 prodfap0 11906 prodfrecap 11907 prodrbdclem 11932 fproddccvg 11933 prodmodclem3 11936 prodmodclem2a 11937 zproddc 11940 fprodseq 11944 fprodntrivap 11945 prodsnf 11953 fprodcl 11968 fprodclf 11996 efexp 12043 sinf 12065 cosf 12066 tanval2ap 12074 tanval3ap 12075 resinval 12076 recosval 12077 efi4p 12078 resin4p 12079 recos4p 12080 resincl 12081 recoscl 12082 sinneg 12087 cosneg 12088 efival 12093 efmival 12094 efeul 12095 sinadd 12097 cosadd 12098 sinsub 12101 cossub 12102 subsin 12104 sinmul 12105 cosmul 12106 addcos 12107 subcos 12108 cos2tsin 12112 ef01bndlem 12117 sin01bnd 12118 cos01bnd 12119 absef 12131 absefib 12132 efieq1re 12133 demoivre 12134 demoivreALT 12135 odd2np1lem 12233 odd2np1 12234 opoe 12256 omoe 12257 opeo 12258 omeo 12259 modgcd 12362 qredeq 12468 modprm0 12627 pythagtriplem1 12638 pythagtriplem12 12648 pythagtriplem14 12650 gzmulcl 12751 4sqlem11 12774 4sqlem17 12780 cncrng 14381 cnfldmulg 14388 mpomulcn 15088 mulc1cncf 15111 mulcncflem 15129 dvmulxxbr 15224 dvmulxx 15226 dvimulf 15228 plymullem1 15270 plymulcl 15277 plysubcl 15278 efper 15329 sinperlem 15330 sin2kpi 15333 cos2kpi 15334 efimpi 15341 sincosq1eq 15361 abssinper 15368 sinkpi 15369 coskpi 15370 binom4 15501 fsumdvdsmul 15513 lgsdilem2 15563 lgsne0 15565 lgsquadlem1 15604 2sqlem2 15642 |
| Copyright terms: Public domain | W3C validator |