Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulcl | GIF version |
Description: Alias for ax-mulcl 7872, for naming consistency with mulcli 7925. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulcl 7872 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 (class class class)co 5853 ℂcc 7772 · cmul 7779 |
This theorem was proved from axioms: ax-mulcl 7872 |
This theorem is referenced by: 0cn 7912 mulid1 7917 mulcli 7925 mulcld 7940 mul31 8050 mul4 8051 muladd11r 8075 cnegexlem2 8095 cnegex 8097 muladd 8303 subdi 8304 mul02 8306 submul2 8318 mulsub 8320 recextlem1 8569 recexap 8571 muleqadd 8586 divassap 8607 divmulassap 8612 divmuldivap 8629 divmuleqap 8634 divadddivap 8644 conjmulap 8646 cju 8877 zneo 9313 exp3vallem 10477 exp3val 10478 exp1 10482 expp1 10483 expcl 10494 expclzaplem 10500 mulexp 10515 sqcl 10537 subsq 10582 subsq2 10583 binom2sub 10589 mulbinom2 10592 binom3 10593 zesq 10594 bernneq 10596 bernneq2 10597 facnn 10661 fac0 10662 fac1 10663 facp1 10664 bcval5 10697 bcn2 10698 reim 10816 imcl 10818 crre 10821 crim 10822 remim 10824 mulreap 10828 cjreb 10830 recj 10831 reneg 10832 readd 10833 remullem 10835 remul2 10837 imcj 10839 imneg 10840 imadd 10841 immul2 10844 cjadd 10848 ipcnval 10850 cjmulrcl 10851 cjneg 10854 imval2 10858 cjreim 10867 rennim 10966 sqabsadd 11019 sqabssub 11020 absreimsq 11031 absreim 11032 absmul 11033 mul0inf 11204 mulcn2 11275 climmul 11290 isermulc2 11303 fsummulc2 11411 prodf 11501 clim2prod 11502 clim2divap 11503 prod3fmul 11504 prodf1 11505 prodfap0 11508 prodfrecap 11509 prodrbdclem 11534 fproddccvg 11535 prodmodclem3 11538 prodmodclem2a 11539 zproddc 11542 fprodseq 11546 fprodntrivap 11547 prodsnf 11555 fprodcl 11570 fprodclf 11598 efexp 11645 sinf 11667 cosf 11668 tanval2ap 11676 tanval3ap 11677 resinval 11678 recosval 11679 efi4p 11680 resin4p 11681 recos4p 11682 resincl 11683 recoscl 11684 sinneg 11689 cosneg 11690 efival 11695 efmival 11696 efeul 11697 sinadd 11699 cosadd 11700 sinsub 11703 cossub 11704 subsin 11706 sinmul 11707 cosmul 11708 addcos 11709 subcos 11710 cos2tsin 11714 ef01bndlem 11719 sin01bnd 11720 cos01bnd 11721 absef 11732 absefib 11733 efieq1re 11734 demoivre 11735 demoivreALT 11736 odd2np1lem 11831 odd2np1 11832 opoe 11854 omoe 11855 opeo 11856 omeo 11857 modgcd 11946 qredeq 12050 modprm0 12208 pythagtriplem1 12219 pythagtriplem12 12229 pythagtriplem14 12231 gzmulcl 12330 mulc1cncf 13370 mulcncflem 13384 dvmulxxbr 13460 dvmulxx 13462 dvimulf 13464 efper 13522 sinperlem 13523 sin2kpi 13526 cos2kpi 13527 efimpi 13534 sincosq1eq 13554 abssinper 13561 sinkpi 13562 coskpi 13563 binom4 13691 lgsdilem2 13731 lgsne0 13733 2sqlem2 13745 |
Copyright terms: Public domain | W3C validator |