| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mulcl | GIF version | ||
| Description: Alias for ax-mulcl 7977, for naming consistency with mulcli 8031. (Contributed by NM, 10-Mar-2008.) | 
| Ref | Expression | 
|---|---|
| mulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-mulcl 7977 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 (class class class)co 5922 ℂcc 7877 · cmul 7884 | 
| This theorem was proved from axioms: ax-mulcl 7977 | 
| This theorem is referenced by: mpomulf 8016 0cn 8018 mulrid 8023 mulcli 8031 mulcld 8047 mul31 8157 mul4 8158 muladd11r 8182 cnegexlem2 8202 cnegex 8204 muladd 8410 subdi 8411 mul02 8413 submul2 8425 mulsub 8427 recextlem1 8678 recexap 8680 muleqadd 8695 divassap 8717 divmulassap 8722 divmuldivap 8739 divmuleqap 8744 divadddivap 8754 conjmulap 8756 cju 8988 ofnegsub 8989 zneo 9427 exp3vallem 10632 exp3val 10633 exp1 10637 expp1 10638 expcl 10649 expclzaplem 10655 mulexp 10670 sqcl 10692 subsq 10738 subsq2 10739 binom2sub 10745 mulbinom2 10748 binom3 10749 zesq 10750 bernneq 10752 bernneq2 10753 mulsubdivbinom2ap 10803 facnn 10819 fac0 10820 fac1 10821 facp1 10822 bcval5 10855 bcn2 10856 reim 11017 imcl 11019 crre 11022 crim 11023 remim 11025 mulreap 11029 cjreb 11031 recj 11032 reneg 11033 readd 11034 remullem 11036 remul2 11038 imcj 11040 imneg 11041 imadd 11042 immul2 11045 cjadd 11049 ipcnval 11051 cjmulrcl 11052 cjneg 11055 imval2 11059 cjreim 11068 rennim 11167 sqabsadd 11220 sqabssub 11221 absreimsq 11232 absreim 11233 absmul 11234 mul0inf 11406 mulcn2 11477 climmul 11492 isermulc2 11505 fsummulc2 11613 prodf 11703 clim2prod 11704 clim2divap 11705 prod3fmul 11706 prodf1 11707 prodfap0 11710 prodfrecap 11711 prodrbdclem 11736 fproddccvg 11737 prodmodclem3 11740 prodmodclem2a 11741 zproddc 11744 fprodseq 11748 fprodntrivap 11749 prodsnf 11757 fprodcl 11772 fprodclf 11800 efexp 11847 sinf 11869 cosf 11870 tanval2ap 11878 tanval3ap 11879 resinval 11880 recosval 11881 efi4p 11882 resin4p 11883 recos4p 11884 resincl 11885 recoscl 11886 sinneg 11891 cosneg 11892 efival 11897 efmival 11898 efeul 11899 sinadd 11901 cosadd 11902 sinsub 11905 cossub 11906 subsin 11908 sinmul 11909 cosmul 11910 addcos 11911 subcos 11912 cos2tsin 11916 ef01bndlem 11921 sin01bnd 11922 cos01bnd 11923 absef 11935 absefib 11936 efieq1re 11937 demoivre 11938 demoivreALT 11939 odd2np1lem 12037 odd2np1 12038 opoe 12060 omoe 12061 opeo 12062 omeo 12063 modgcd 12158 qredeq 12264 modprm0 12423 pythagtriplem1 12434 pythagtriplem12 12444 pythagtriplem14 12446 gzmulcl 12547 4sqlem11 12570 4sqlem17 12576 cncrng 14125 cnfldmulg 14132 mpomulcn 14802 mulc1cncf 14825 mulcncflem 14843 dvmulxxbr 14938 dvmulxx 14940 dvimulf 14942 plymullem1 14984 plymulcl 14991 plysubcl 14992 efper 15043 sinperlem 15044 sin2kpi 15047 cos2kpi 15048 efimpi 15055 sincosq1eq 15075 abssinper 15082 sinkpi 15083 coskpi 15084 binom4 15215 fsumdvdsmul 15227 lgsdilem2 15277 lgsne0 15279 lgsquadlem1 15318 2sqlem2 15356 | 
| Copyright terms: Public domain | W3C validator |