![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulcl | GIF version |
Description: Alias for ax-mulcl 7637, for naming consistency with mulcli 7689. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulcl 7637 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 1461 (class class class)co 5726 ℂcc 7539 · cmul 7546 |
This theorem was proved from axioms: ax-mulcl 7637 |
This theorem is referenced by: 0cn 7676 mulid1 7681 mulcli 7689 mulcld 7704 mul31 7810 mul4 7811 muladd11r 7835 cnegexlem2 7855 cnegex 7857 muladd 8059 subdi 8060 mul02 8062 submul2 8074 mulsub 8076 recextlem1 8319 recexap 8321 muleqadd 8336 divassap 8357 divmulassap 8362 divmuldivap 8379 divmuleqap 8384 divadddivap 8394 conjmulap 8396 cju 8623 zneo 9050 exp3vallem 10181 exp3val 10182 exp1 10186 expp1 10187 expcl 10198 expclzaplem 10204 mulexp 10219 sqcl 10241 subsq 10286 subsq2 10287 binom2sub 10292 mulbinom2 10295 binom3 10296 zesq 10297 bernneq 10299 bernneq2 10300 facnn 10360 fac0 10361 fac1 10362 facp1 10363 bcval5 10396 bcn2 10397 reim 10511 imcl 10513 crre 10516 crim 10517 remim 10519 mulreap 10523 cjreb 10525 recj 10526 reneg 10527 readd 10528 remullem 10530 remul2 10532 imcj 10534 imneg 10535 imadd 10536 immul2 10539 cjadd 10543 ipcnval 10545 cjmulrcl 10546 cjneg 10549 imval2 10553 cjreim 10562 rennim 10660 sqabsadd 10713 sqabssub 10714 absreimsq 10725 absreim 10726 absmul 10727 mul0inf 10898 mulcn2 10967 climmul 10982 isermulc2 10995 fsummulc2 11103 efexp 11233 sinf 11256 cosf 11257 tanval2ap 11265 tanval3ap 11266 resinval 11267 recosval 11268 efi4p 11269 resin4p 11270 recos4p 11271 resincl 11272 recoscl 11273 sinneg 11278 cosneg 11279 efival 11284 efmival 11285 efeul 11286 sinadd 11288 cosadd 11289 sinsub 11292 cossub 11293 subsin 11295 sinmul 11296 cosmul 11297 addcos 11298 subcos 11299 cos2tsin 11303 ef01bndlem 11308 sin01bnd 11309 cos01bnd 11310 absef 11320 absefib 11321 efieq1re 11322 demoivre 11323 demoivreALT 11324 odd2np1lem 11411 odd2np1 11412 opoe 11434 omoe 11435 opeo 11436 omeo 11437 modgcd 11521 qredeq 11617 mulc1cncf 12556 mulcncflem 12570 |
Copyright terms: Public domain | W3C validator |