| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcl | GIF version | ||
| Description: Alias for ax-mulcl 8085, for naming consistency with mulcli 8139. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulcl 8085 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 (class class class)co 5994 ℂcc 7985 · cmul 7992 |
| This theorem was proved from axioms: ax-mulcl 8085 |
| This theorem is referenced by: mpomulf 8124 0cn 8126 mulrid 8131 mulcli 8139 mulcld 8155 mul31 8265 mul4 8266 muladd11r 8290 cnegexlem2 8310 cnegex 8312 muladd 8518 subdi 8519 mul02 8521 submul2 8533 mulsub 8535 recextlem1 8786 recexap 8788 muleqadd 8803 divassap 8825 divmulassap 8830 divmuldivap 8847 divmuleqap 8852 divadddivap 8862 conjmulap 8864 cju 9096 ofnegsub 9097 zneo 9536 exp3vallem 10749 exp3val 10750 exp1 10754 expp1 10755 expcl 10766 expclzaplem 10772 mulexp 10787 sqcl 10809 subsq 10855 subsq2 10856 binom2sub 10862 mulbinom2 10865 binom3 10866 zesq 10867 bernneq 10869 bernneq2 10870 mulsubdivbinom2ap 10920 facnn 10936 fac0 10937 fac1 10938 facp1 10939 bcval5 10972 bcn2 10973 reim 11349 imcl 11351 crre 11354 crim 11355 remim 11357 mulreap 11361 cjreb 11363 recj 11364 reneg 11365 readd 11366 remullem 11368 remul2 11370 imcj 11372 imneg 11373 imadd 11374 immul2 11377 cjadd 11381 ipcnval 11383 cjmulrcl 11384 cjneg 11387 imval2 11391 cjreim 11400 rennim 11499 sqabsadd 11552 sqabssub 11553 absreimsq 11564 absreim 11565 absmul 11566 mul0inf 11738 mulcn2 11809 climmul 11824 isermulc2 11837 fsummulc2 11945 prodf 12035 clim2prod 12036 clim2divap 12037 prod3fmul 12038 prodf1 12039 prodfap0 12042 prodfrecap 12043 prodrbdclem 12068 fproddccvg 12069 prodmodclem3 12072 prodmodclem2a 12073 zproddc 12076 fprodseq 12080 fprodntrivap 12081 prodsnf 12089 fprodcl 12104 fprodclf 12132 efexp 12179 sinf 12201 cosf 12202 tanval2ap 12210 tanval3ap 12211 resinval 12212 recosval 12213 efi4p 12214 resin4p 12215 recos4p 12216 resincl 12217 recoscl 12218 sinneg 12223 cosneg 12224 efival 12229 efmival 12230 efeul 12231 sinadd 12233 cosadd 12234 sinsub 12237 cossub 12238 subsin 12240 sinmul 12241 cosmul 12242 addcos 12243 subcos 12244 cos2tsin 12248 ef01bndlem 12253 sin01bnd 12254 cos01bnd 12255 absef 12267 absefib 12268 efieq1re 12269 demoivre 12270 demoivreALT 12271 odd2np1lem 12369 odd2np1 12370 opoe 12392 omoe 12393 opeo 12394 omeo 12395 modgcd 12498 qredeq 12604 modprm0 12763 pythagtriplem1 12774 pythagtriplem12 12784 pythagtriplem14 12786 gzmulcl 12887 4sqlem11 12910 4sqlem17 12916 cncrng 14518 cnfldmulg 14525 mpomulcn 15225 mulc1cncf 15248 mulcncflem 15266 dvmulxxbr 15361 dvmulxx 15363 dvimulf 15365 plymullem1 15407 plymulcl 15414 plysubcl 15415 efper 15466 sinperlem 15467 sin2kpi 15470 cos2kpi 15471 efimpi 15478 sincosq1eq 15498 abssinper 15505 sinkpi 15506 coskpi 15507 binom4 15638 fsumdvdsmul 15650 lgsdilem2 15700 lgsne0 15702 lgsquadlem1 15741 2sqlem2 15779 |
| Copyright terms: Public domain | W3C validator |