![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulcl | GIF version |
Description: Alias for ax-mulcl 7909, for naming consistency with mulcli 7962. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulcl | โข ((๐ด โ โ โง ๐ต โ โ) โ (๐ด ยท ๐ต) โ โ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulcl 7909 | 1 โข ((๐ด โ โ โง ๐ต โ โ) โ (๐ด ยท ๐ต) โ โ) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โง wa 104 โ wcel 2148 (class class class)co 5875 โcc 7809 ยท cmul 7816 |
This theorem was proved from axioms: ax-mulcl 7909 |
This theorem is referenced by: 0cn 7949 mulrid 7954 mulcli 7962 mulcld 7978 mul31 8088 mul4 8089 muladd11r 8113 cnegexlem2 8133 cnegex 8135 muladd 8341 subdi 8342 mul02 8344 submul2 8356 mulsub 8358 recextlem1 8608 recexap 8610 muleqadd 8625 divassap 8647 divmulassap 8652 divmuldivap 8669 divmuleqap 8674 divadddivap 8684 conjmulap 8686 cju 8918 zneo 9354 exp3vallem 10521 exp3val 10522 exp1 10526 expp1 10527 expcl 10538 expclzaplem 10544 mulexp 10559 sqcl 10581 subsq 10627 subsq2 10628 binom2sub 10634 mulbinom2 10637 binom3 10638 zesq 10639 bernneq 10641 bernneq2 10642 mulsubdivbinom2ap 10691 facnn 10707 fac0 10708 fac1 10709 facp1 10710 bcval5 10743 bcn2 10744 reim 10861 imcl 10863 crre 10866 crim 10867 remim 10869 mulreap 10873 cjreb 10875 recj 10876 reneg 10877 readd 10878 remullem 10880 remul2 10882 imcj 10884 imneg 10885 imadd 10886 immul2 10889 cjadd 10893 ipcnval 10895 cjmulrcl 10896 cjneg 10899 imval2 10903 cjreim 10912 rennim 11011 sqabsadd 11064 sqabssub 11065 absreimsq 11076 absreim 11077 absmul 11078 mul0inf 11249 mulcn2 11320 climmul 11335 isermulc2 11348 fsummulc2 11456 prodf 11546 clim2prod 11547 clim2divap 11548 prod3fmul 11549 prodf1 11550 prodfap0 11553 prodfrecap 11554 prodrbdclem 11579 fproddccvg 11580 prodmodclem3 11583 prodmodclem2a 11584 zproddc 11587 fprodseq 11591 fprodntrivap 11592 prodsnf 11600 fprodcl 11615 fprodclf 11643 efexp 11690 sinf 11712 cosf 11713 tanval2ap 11721 tanval3ap 11722 resinval 11723 recosval 11724 efi4p 11725 resin4p 11726 recos4p 11727 resincl 11728 recoscl 11729 sinneg 11734 cosneg 11735 efival 11740 efmival 11741 efeul 11742 sinadd 11744 cosadd 11745 sinsub 11748 cossub 11749 subsin 11751 sinmul 11752 cosmul 11753 addcos 11754 subcos 11755 cos2tsin 11759 ef01bndlem 11764 sin01bnd 11765 cos01bnd 11766 absef 11777 absefib 11778 efieq1re 11779 demoivre 11780 demoivreALT 11781 odd2np1lem 11877 odd2np1 11878 opoe 11900 omoe 11901 opeo 11902 omeo 11903 modgcd 11992 qredeq 12096 modprm0 12254 pythagtriplem1 12265 pythagtriplem12 12275 pythagtriplem14 12277 gzmulcl 12376 cncrng 13466 cnfldmulg 13473 mulc1cncf 14079 mulcncflem 14093 dvmulxxbr 14169 dvmulxx 14171 dvimulf 14173 efper 14231 sinperlem 14232 sin2kpi 14235 cos2kpi 14236 efimpi 14243 sincosq1eq 14263 abssinper 14270 sinkpi 14271 coskpi 14272 binom4 14400 lgsdilem2 14440 lgsne0 14442 2sqlem2 14465 |
Copyright terms: Public domain | W3C validator |