![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulcl | GIF version |
Description: Alias for ax-mulcl 7972, for naming consistency with mulcli 8026. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulcl 7972 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 (class class class)co 5919 ℂcc 7872 · cmul 7879 |
This theorem was proved from axioms: ax-mulcl 7972 |
This theorem is referenced by: mpomulf 8011 0cn 8013 mulrid 8018 mulcli 8026 mulcld 8042 mul31 8152 mul4 8153 muladd11r 8177 cnegexlem2 8197 cnegex 8199 muladd 8405 subdi 8406 mul02 8408 submul2 8420 mulsub 8422 recextlem1 8672 recexap 8674 muleqadd 8689 divassap 8711 divmulassap 8716 divmuldivap 8733 divmuleqap 8738 divadddivap 8748 conjmulap 8750 cju 8982 ofnegsub 8983 zneo 9421 exp3vallem 10614 exp3val 10615 exp1 10619 expp1 10620 expcl 10631 expclzaplem 10637 mulexp 10652 sqcl 10674 subsq 10720 subsq2 10721 binom2sub 10727 mulbinom2 10730 binom3 10731 zesq 10732 bernneq 10734 bernneq2 10735 mulsubdivbinom2ap 10785 facnn 10801 fac0 10802 fac1 10803 facp1 10804 bcval5 10837 bcn2 10838 reim 10999 imcl 11001 crre 11004 crim 11005 remim 11007 mulreap 11011 cjreb 11013 recj 11014 reneg 11015 readd 11016 remullem 11018 remul2 11020 imcj 11022 imneg 11023 imadd 11024 immul2 11027 cjadd 11031 ipcnval 11033 cjmulrcl 11034 cjneg 11037 imval2 11041 cjreim 11050 rennim 11149 sqabsadd 11202 sqabssub 11203 absreimsq 11214 absreim 11215 absmul 11216 mul0inf 11387 mulcn2 11458 climmul 11473 isermulc2 11486 fsummulc2 11594 prodf 11684 clim2prod 11685 clim2divap 11686 prod3fmul 11687 prodf1 11688 prodfap0 11691 prodfrecap 11692 prodrbdclem 11717 fproddccvg 11718 prodmodclem3 11721 prodmodclem2a 11722 zproddc 11725 fprodseq 11729 fprodntrivap 11730 prodsnf 11738 fprodcl 11753 fprodclf 11781 efexp 11828 sinf 11850 cosf 11851 tanval2ap 11859 tanval3ap 11860 resinval 11861 recosval 11862 efi4p 11863 resin4p 11864 recos4p 11865 resincl 11866 recoscl 11867 sinneg 11872 cosneg 11873 efival 11878 efmival 11879 efeul 11880 sinadd 11882 cosadd 11883 sinsub 11886 cossub 11887 subsin 11889 sinmul 11890 cosmul 11891 addcos 11892 subcos 11893 cos2tsin 11897 ef01bndlem 11902 sin01bnd 11903 cos01bnd 11904 absef 11916 absefib 11917 efieq1re 11918 demoivre 11919 demoivreALT 11920 odd2np1lem 12016 odd2np1 12017 opoe 12039 omoe 12040 opeo 12041 omeo 12042 modgcd 12131 qredeq 12237 modprm0 12395 pythagtriplem1 12406 pythagtriplem12 12416 pythagtriplem14 12418 gzmulcl 12519 4sqlem11 12542 4sqlem17 12548 cncrng 14068 cnfldmulg 14075 mpomulcn 14745 mulc1cncf 14768 mulcncflem 14786 dvmulxxbr 14881 dvmulxx 14883 dvimulf 14885 plymullem1 14927 plymulcl 14934 plysubcl 14935 efper 14983 sinperlem 14984 sin2kpi 14987 cos2kpi 14988 efimpi 14995 sincosq1eq 15015 abssinper 15022 sinkpi 15023 coskpi 15024 binom4 15152 lgsdilem2 15193 lgsne0 15195 lgsquadlem1 15234 2sqlem2 15272 |
Copyright terms: Public domain | W3C validator |