Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulcl | GIF version |
Description: Alias for ax-mulcl 7847, for naming consistency with mulcli 7900. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulcl 7847 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 (class class class)co 5841 ℂcc 7747 · cmul 7754 |
This theorem was proved from axioms: ax-mulcl 7847 |
This theorem is referenced by: 0cn 7887 mulid1 7892 mulcli 7900 mulcld 7915 mul31 8025 mul4 8026 muladd11r 8050 cnegexlem2 8070 cnegex 8072 muladd 8278 subdi 8279 mul02 8281 submul2 8293 mulsub 8295 recextlem1 8544 recexap 8546 muleqadd 8561 divassap 8582 divmulassap 8587 divmuldivap 8604 divmuleqap 8609 divadddivap 8619 conjmulap 8621 cju 8852 zneo 9288 exp3vallem 10452 exp3val 10453 exp1 10457 expp1 10458 expcl 10469 expclzaplem 10475 mulexp 10490 sqcl 10512 subsq 10557 subsq2 10558 binom2sub 10564 mulbinom2 10567 binom3 10568 zesq 10569 bernneq 10571 bernneq2 10572 facnn 10636 fac0 10637 fac1 10638 facp1 10639 bcval5 10672 bcn2 10673 reim 10790 imcl 10792 crre 10795 crim 10796 remim 10798 mulreap 10802 cjreb 10804 recj 10805 reneg 10806 readd 10807 remullem 10809 remul2 10811 imcj 10813 imneg 10814 imadd 10815 immul2 10818 cjadd 10822 ipcnval 10824 cjmulrcl 10825 cjneg 10828 imval2 10832 cjreim 10841 rennim 10940 sqabsadd 10993 sqabssub 10994 absreimsq 11005 absreim 11006 absmul 11007 mul0inf 11178 mulcn2 11249 climmul 11264 isermulc2 11277 fsummulc2 11385 prodf 11475 clim2prod 11476 clim2divap 11477 prod3fmul 11478 prodf1 11479 prodfap0 11482 prodfrecap 11483 prodrbdclem 11508 fproddccvg 11509 prodmodclem3 11512 prodmodclem2a 11513 zproddc 11516 fprodseq 11520 fprodntrivap 11521 prodsnf 11529 fprodcl 11544 fprodclf 11572 efexp 11619 sinf 11641 cosf 11642 tanval2ap 11650 tanval3ap 11651 resinval 11652 recosval 11653 efi4p 11654 resin4p 11655 recos4p 11656 resincl 11657 recoscl 11658 sinneg 11663 cosneg 11664 efival 11669 efmival 11670 efeul 11671 sinadd 11673 cosadd 11674 sinsub 11677 cossub 11678 subsin 11680 sinmul 11681 cosmul 11682 addcos 11683 subcos 11684 cos2tsin 11688 ef01bndlem 11693 sin01bnd 11694 cos01bnd 11695 absef 11706 absefib 11707 efieq1re 11708 demoivre 11709 demoivreALT 11710 odd2np1lem 11805 odd2np1 11806 opoe 11828 omoe 11829 opeo 11830 omeo 11831 modgcd 11920 qredeq 12024 modprm0 12182 pythagtriplem1 12193 pythagtriplem12 12203 pythagtriplem14 12205 gzmulcl 12304 mulc1cncf 13176 mulcncflem 13190 dvmulxxbr 13266 dvmulxx 13268 dvimulf 13270 efper 13328 sinperlem 13329 sin2kpi 13332 cos2kpi 13333 efimpi 13340 sincosq1eq 13360 abssinper 13367 sinkpi 13368 coskpi 13369 binom4 13497 lgsdilem2 13537 lgsne0 13539 2sqlem2 13551 |
Copyright terms: Public domain | W3C validator |