| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcl | GIF version | ||
| Description: Alias for ax-mulcl 7996, for naming consistency with mulcli 8050. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulcl 7996 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 · cmul 7903 |
| This theorem was proved from axioms: ax-mulcl 7996 |
| This theorem is referenced by: mpomulf 8035 0cn 8037 mulrid 8042 mulcli 8050 mulcld 8066 mul31 8176 mul4 8177 muladd11r 8201 cnegexlem2 8221 cnegex 8223 muladd 8429 subdi 8430 mul02 8432 submul2 8444 mulsub 8446 recextlem1 8697 recexap 8699 muleqadd 8714 divassap 8736 divmulassap 8741 divmuldivap 8758 divmuleqap 8763 divadddivap 8773 conjmulap 8775 cju 9007 ofnegsub 9008 zneo 9446 exp3vallem 10651 exp3val 10652 exp1 10656 expp1 10657 expcl 10668 expclzaplem 10674 mulexp 10689 sqcl 10711 subsq 10757 subsq2 10758 binom2sub 10764 mulbinom2 10767 binom3 10768 zesq 10769 bernneq 10771 bernneq2 10772 mulsubdivbinom2ap 10822 facnn 10838 fac0 10839 fac1 10840 facp1 10841 bcval5 10874 bcn2 10875 reim 11036 imcl 11038 crre 11041 crim 11042 remim 11044 mulreap 11048 cjreb 11050 recj 11051 reneg 11052 readd 11053 remullem 11055 remul2 11057 imcj 11059 imneg 11060 imadd 11061 immul2 11064 cjadd 11068 ipcnval 11070 cjmulrcl 11071 cjneg 11074 imval2 11078 cjreim 11087 rennim 11186 sqabsadd 11239 sqabssub 11240 absreimsq 11251 absreim 11252 absmul 11253 mul0inf 11425 mulcn2 11496 climmul 11511 isermulc2 11524 fsummulc2 11632 prodf 11722 clim2prod 11723 clim2divap 11724 prod3fmul 11725 prodf1 11726 prodfap0 11729 prodfrecap 11730 prodrbdclem 11755 fproddccvg 11756 prodmodclem3 11759 prodmodclem2a 11760 zproddc 11763 fprodseq 11767 fprodntrivap 11768 prodsnf 11776 fprodcl 11791 fprodclf 11819 efexp 11866 sinf 11888 cosf 11889 tanval2ap 11897 tanval3ap 11898 resinval 11899 recosval 11900 efi4p 11901 resin4p 11902 recos4p 11903 resincl 11904 recoscl 11905 sinneg 11910 cosneg 11911 efival 11916 efmival 11917 efeul 11918 sinadd 11920 cosadd 11921 sinsub 11924 cossub 11925 subsin 11927 sinmul 11928 cosmul 11929 addcos 11930 subcos 11931 cos2tsin 11935 ef01bndlem 11940 sin01bnd 11941 cos01bnd 11942 absef 11954 absefib 11955 efieq1re 11956 demoivre 11957 demoivreALT 11958 odd2np1lem 12056 odd2np1 12057 opoe 12079 omoe 12080 opeo 12081 omeo 12082 modgcd 12185 qredeq 12291 modprm0 12450 pythagtriplem1 12461 pythagtriplem12 12471 pythagtriplem14 12473 gzmulcl 12574 4sqlem11 12597 4sqlem17 12603 cncrng 14203 cnfldmulg 14210 mpomulcn 14910 mulc1cncf 14933 mulcncflem 14951 dvmulxxbr 15046 dvmulxx 15048 dvimulf 15050 plymullem1 15092 plymulcl 15099 plysubcl 15100 efper 15151 sinperlem 15152 sin2kpi 15155 cos2kpi 15156 efimpi 15163 sincosq1eq 15183 abssinper 15190 sinkpi 15191 coskpi 15192 binom4 15323 fsumdvdsmul 15335 lgsdilem2 15385 lgsne0 15387 lgsquadlem1 15426 2sqlem2 15464 |
| Copyright terms: Public domain | W3C validator |