Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulcl | GIF version |
Description: Alias for ax-mulcl 7813, for naming consistency with mulcli 7866. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulcl 7813 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2128 (class class class)co 5818 ℂcc 7713 · cmul 7720 |
This theorem was proved from axioms: ax-mulcl 7813 |
This theorem is referenced by: 0cn 7853 mulid1 7858 mulcli 7866 mulcld 7881 mul31 7989 mul4 7990 muladd11r 8014 cnegexlem2 8034 cnegex 8036 muladd 8242 subdi 8243 mul02 8245 submul2 8257 mulsub 8259 recextlem1 8508 recexap 8510 muleqadd 8525 divassap 8546 divmulassap 8551 divmuldivap 8568 divmuleqap 8573 divadddivap 8583 conjmulap 8585 cju 8815 zneo 9248 exp3vallem 10402 exp3val 10403 exp1 10407 expp1 10408 expcl 10419 expclzaplem 10425 mulexp 10440 sqcl 10462 subsq 10507 subsq2 10508 binom2sub 10513 mulbinom2 10516 binom3 10517 zesq 10518 bernneq 10520 bernneq2 10521 facnn 10583 fac0 10584 fac1 10585 facp1 10586 bcval5 10619 bcn2 10620 reim 10734 imcl 10736 crre 10739 crim 10740 remim 10742 mulreap 10746 cjreb 10748 recj 10749 reneg 10750 readd 10751 remullem 10753 remul2 10755 imcj 10757 imneg 10758 imadd 10759 immul2 10762 cjadd 10766 ipcnval 10768 cjmulrcl 10769 cjneg 10772 imval2 10776 cjreim 10785 rennim 10884 sqabsadd 10937 sqabssub 10938 absreimsq 10949 absreim 10950 absmul 10951 mul0inf 11122 mulcn2 11191 climmul 11206 isermulc2 11219 fsummulc2 11327 prodf 11417 clim2prod 11418 clim2divap 11419 prod3fmul 11420 prodf1 11421 prodfap0 11424 prodfrecap 11425 prodrbdclem 11450 fproddccvg 11451 prodmodclem3 11454 prodmodclem2a 11455 zproddc 11458 fprodseq 11462 fprodntrivap 11463 prodsnf 11471 fprodcl 11486 fprodclf 11514 efexp 11561 sinf 11583 cosf 11584 tanval2ap 11592 tanval3ap 11593 resinval 11594 recosval 11595 efi4p 11596 resin4p 11597 recos4p 11598 resincl 11599 recoscl 11600 sinneg 11605 cosneg 11606 efival 11611 efmival 11612 efeul 11613 sinadd 11615 cosadd 11616 sinsub 11619 cossub 11620 subsin 11622 sinmul 11623 cosmul 11624 addcos 11625 subcos 11626 cos2tsin 11630 ef01bndlem 11635 sin01bnd 11636 cos01bnd 11637 absef 11648 absefib 11649 efieq1re 11650 demoivre 11651 demoivreALT 11652 odd2np1lem 11744 odd2np1 11745 opoe 11767 omoe 11768 opeo 11769 omeo 11770 modgcd 11855 qredeq 11953 mulc1cncf 12936 mulcncflem 12950 dvmulxxbr 13026 dvmulxx 13028 dvimulf 13030 efper 13088 sinperlem 13089 sin2kpi 13092 cos2kpi 13093 efimpi 13100 sincosq1eq 13120 abssinper 13127 sinkpi 13128 coskpi 13129 |
Copyright terms: Public domain | W3C validator |