ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axmulcl GIF version

Theorem axmulcl 7698
Description: Closure law for multiplication of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcl 7742 be used later. Instead, in most cases use mulcl 7771. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axmulcl ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)

Proof of Theorem axmulcl
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4563 . . . . 5 (𝐴 ∈ (R × R) → ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)))
2 df-c 7650 . . . . 5 ℂ = (R × R)
31, 2eleq2s 2235 . . . 4 (𝐴 ∈ ℂ → ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)))
4 elxpi 4563 . . . . 5 (𝐵 ∈ (R × R) → ∃𝑧𝑤(𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R)))
54, 2eleq2s 2235 . . . 4 (𝐵 ∈ ℂ → ∃𝑧𝑤(𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R)))
63, 5anim12i 336 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ ∃𝑧𝑤(𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))))
7 ee4anv 1907 . . 3 (∃𝑥𝑦𝑧𝑤((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) ↔ (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ ∃𝑧𝑤(𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))))
86, 7sylibr 133 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃𝑥𝑦𝑧𝑤((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))))
9 simpll 519 . . . . . . 7 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → 𝐴 = ⟨𝑥, 𝑦⟩)
10 simprl 521 . . . . . . 7 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → 𝐵 = ⟨𝑧, 𝑤⟩)
119, 10oveq12d 5800 . . . . . 6 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝐴 · 𝐵) = (⟨𝑥, 𝑦⟩ · ⟨𝑧, 𝑤⟩))
12 mulcnsr 7667 . . . . . . 7 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (⟨𝑥, 𝑦⟩ · ⟨𝑧, 𝑤⟩) = ⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩)
1312ad2ant2l 500 . . . . . 6 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (⟨𝑥, 𝑦⟩ · ⟨𝑧, 𝑤⟩) = ⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩)
1411, 13eqtrd 2173 . . . . 5 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝐴 · 𝐵) = ⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩)
15 simplrl 525 . . . . . . . . 9 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → 𝑥R)
16 simprrl 529 . . . . . . . . 9 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → 𝑧R)
17 mulclsr 7586 . . . . . . . . 9 ((𝑥R𝑧R) → (𝑥 ·R 𝑧) ∈ R)
1815, 16, 17syl2anc 409 . . . . . . . 8 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝑥 ·R 𝑧) ∈ R)
19 m1r 7584 . . . . . . . . . 10 -1RR
2019a1i 9 . . . . . . . . 9 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → -1RR)
21 simplrr 526 . . . . . . . . . 10 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → 𝑦R)
22 simprrr 530 . . . . . . . . . 10 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → 𝑤R)
23 mulclsr 7586 . . . . . . . . . 10 ((𝑦R𝑤R) → (𝑦 ·R 𝑤) ∈ R)
2421, 22, 23syl2anc 409 . . . . . . . . 9 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝑦 ·R 𝑤) ∈ R)
25 mulclsr 7586 . . . . . . . . 9 ((-1RR ∧ (𝑦 ·R 𝑤) ∈ R) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
2620, 24, 25syl2anc 409 . . . . . . . 8 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
27 addclsr 7585 . . . . . . . 8 (((𝑥 ·R 𝑧) ∈ R ∧ (-1R ·R (𝑦 ·R 𝑤)) ∈ R) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
2818, 26, 27syl2anc 409 . . . . . . 7 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
29 mulclsr 7586 . . . . . . . . 9 ((𝑦R𝑧R) → (𝑦 ·R 𝑧) ∈ R)
3021, 16, 29syl2anc 409 . . . . . . . 8 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝑦 ·R 𝑧) ∈ R)
31 mulclsr 7586 . . . . . . . . 9 ((𝑥R𝑤R) → (𝑥 ·R 𝑤) ∈ R)
3215, 22, 31syl2anc 409 . . . . . . . 8 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝑥 ·R 𝑤) ∈ R)
33 addclsr 7585 . . . . . . . 8 (((𝑦 ·R 𝑧) ∈ R ∧ (𝑥 ·R 𝑤) ∈ R) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
3430, 32, 33syl2anc 409 . . . . . . 7 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
35 opelxpi 4579 . . . . . . 7 ((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R ∧ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R) → ⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩ ∈ (R × R))
3628, 34, 35syl2anc 409 . . . . . 6 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → ⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩ ∈ (R × R))
3736, 2eleqtrrdi 2234 . . . . 5 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → ⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩ ∈ ℂ)
3814, 37eqeltrd 2217 . . . 4 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝐴 · 𝐵) ∈ ℂ)
3938exlimivv 1869 . . 3 (∃𝑧𝑤((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝐴 · 𝐵) ∈ ℂ)
4039exlimivv 1869 . 2 (∃𝑥𝑦𝑧𝑤((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝐴 · 𝐵) ∈ ℂ)
418, 40syl 14 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wex 1469  wcel 1481  cop 3535   × cxp 4545  (class class class)co 5782  Rcnr 7129  -1Rcm1r 7132   +R cplr 7133   ·R cmr 7134  cc 7642   · cmul 7649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-i1p 7299  df-iplp 7300  df-imp 7301  df-enr 7558  df-nr 7559  df-plr 7560  df-mr 7561  df-m1r 7565  df-c 7650  df-mul 7656
This theorem is referenced by:  axmulf  7701
  Copyright terms: Public domain W3C validator