ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axmulcl GIF version

Theorem axmulcl 7807
Description: Closure law for multiplication of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcl 7851 be used later. Instead, in most cases use mulcl 7880. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axmulcl ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)

Proof of Theorem axmulcl
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4620 . . . . 5 (𝐴 ∈ (R × R) → ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)))
2 df-c 7759 . . . . 5 ℂ = (R × R)
31, 2eleq2s 2261 . . . 4 (𝐴 ∈ ℂ → ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)))
4 elxpi 4620 . . . . 5 (𝐵 ∈ (R × R) → ∃𝑧𝑤(𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R)))
54, 2eleq2s 2261 . . . 4 (𝐵 ∈ ℂ → ∃𝑧𝑤(𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R)))
63, 5anim12i 336 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ ∃𝑧𝑤(𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))))
7 ee4anv 1922 . . 3 (∃𝑥𝑦𝑧𝑤((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) ↔ (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ ∃𝑧𝑤(𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))))
86, 7sylibr 133 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃𝑥𝑦𝑧𝑤((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))))
9 simpll 519 . . . . . . 7 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → 𝐴 = ⟨𝑥, 𝑦⟩)
10 simprl 521 . . . . . . 7 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → 𝐵 = ⟨𝑧, 𝑤⟩)
119, 10oveq12d 5860 . . . . . 6 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝐴 · 𝐵) = (⟨𝑥, 𝑦⟩ · ⟨𝑧, 𝑤⟩))
12 mulcnsr 7776 . . . . . . 7 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (⟨𝑥, 𝑦⟩ · ⟨𝑧, 𝑤⟩) = ⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩)
1312ad2ant2l 500 . . . . . 6 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (⟨𝑥, 𝑦⟩ · ⟨𝑧, 𝑤⟩) = ⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩)
1411, 13eqtrd 2198 . . . . 5 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝐴 · 𝐵) = ⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩)
15 simplrl 525 . . . . . . . . 9 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → 𝑥R)
16 simprrl 529 . . . . . . . . 9 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → 𝑧R)
17 mulclsr 7695 . . . . . . . . 9 ((𝑥R𝑧R) → (𝑥 ·R 𝑧) ∈ R)
1815, 16, 17syl2anc 409 . . . . . . . 8 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝑥 ·R 𝑧) ∈ R)
19 m1r 7693 . . . . . . . . . 10 -1RR
2019a1i 9 . . . . . . . . 9 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → -1RR)
21 simplrr 526 . . . . . . . . . 10 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → 𝑦R)
22 simprrr 530 . . . . . . . . . 10 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → 𝑤R)
23 mulclsr 7695 . . . . . . . . . 10 ((𝑦R𝑤R) → (𝑦 ·R 𝑤) ∈ R)
2421, 22, 23syl2anc 409 . . . . . . . . 9 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝑦 ·R 𝑤) ∈ R)
25 mulclsr 7695 . . . . . . . . 9 ((-1RR ∧ (𝑦 ·R 𝑤) ∈ R) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
2620, 24, 25syl2anc 409 . . . . . . . 8 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
27 addclsr 7694 . . . . . . . 8 (((𝑥 ·R 𝑧) ∈ R ∧ (-1R ·R (𝑦 ·R 𝑤)) ∈ R) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
2818, 26, 27syl2anc 409 . . . . . . 7 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
29 mulclsr 7695 . . . . . . . . 9 ((𝑦R𝑧R) → (𝑦 ·R 𝑧) ∈ R)
3021, 16, 29syl2anc 409 . . . . . . . 8 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝑦 ·R 𝑧) ∈ R)
31 mulclsr 7695 . . . . . . . . 9 ((𝑥R𝑤R) → (𝑥 ·R 𝑤) ∈ R)
3215, 22, 31syl2anc 409 . . . . . . . 8 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝑥 ·R 𝑤) ∈ R)
33 addclsr 7694 . . . . . . . 8 (((𝑦 ·R 𝑧) ∈ R ∧ (𝑥 ·R 𝑤) ∈ R) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
3430, 32, 33syl2anc 409 . . . . . . 7 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
35 opelxpi 4636 . . . . . . 7 ((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R ∧ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R) → ⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩ ∈ (R × R))
3628, 34, 35syl2anc 409 . . . . . 6 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → ⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩ ∈ (R × R))
3736, 2eleqtrrdi 2260 . . . . 5 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → ⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩ ∈ ℂ)
3814, 37eqeltrd 2243 . . . 4 (((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝐴 · 𝐵) ∈ ℂ)
3938exlimivv 1884 . . 3 (∃𝑧𝑤((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝐴 · 𝐵) ∈ ℂ)
4039exlimivv 1884 . 2 (∃𝑥𝑦𝑧𝑤((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥R𝑦R)) ∧ (𝐵 = ⟨𝑧, 𝑤⟩ ∧ (𝑧R𝑤R))) → (𝐴 · 𝐵) ∈ ℂ)
418, 40syl 14 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wex 1480  wcel 2136  cop 3579   × cxp 4602  (class class class)co 5842  Rcnr 7238  -1Rcm1r 7241   +R cplr 7242   ·R cmr 7243  cc 7751   · cmul 7758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-imp 7410  df-enr 7667  df-nr 7668  df-plr 7669  df-mr 7670  df-m1r 7674  df-c 7759  df-mul 7765
This theorem is referenced by:  axmulf  7810
  Copyright terms: Public domain W3C validator