ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axmulcom GIF version

Theorem axmulcom 7703
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 7745 be used later. Instead, use mulcom 7773. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axmulcom ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))

Proof of Theorem axmulcom
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 7673 . 2 ℂ = ((R × R) / E )
2 mulcnsrec 7675 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ([⟨𝑥, 𝑦⟩] E · [⟨𝑧, 𝑤⟩] E ) = [⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩] E )
3 mulcnsrec 7675 . 2 (((𝑧R𝑤R) ∧ (𝑥R𝑦R)) → ([⟨𝑧, 𝑤⟩] E · [⟨𝑥, 𝑦⟩] E ) = [⟨((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦))), ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))⟩] E )
4 simpll 519 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → 𝑥R)
5 simprl 521 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → 𝑧R)
6 mulcomsrg 7589 . . . 4 ((𝑥R𝑧R) → (𝑥 ·R 𝑧) = (𝑧 ·R 𝑥))
74, 5, 6syl2anc 409 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑥 ·R 𝑧) = (𝑧 ·R 𝑥))
8 simplr 520 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → 𝑦R)
9 simprr 522 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → 𝑤R)
10 mulcomsrg 7589 . . . . 5 ((𝑦R𝑤R) → (𝑦 ·R 𝑤) = (𝑤 ·R 𝑦))
118, 9, 10syl2anc 409 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑦 ·R 𝑤) = (𝑤 ·R 𝑦))
1211oveq2d 5798 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (-1R ·R (𝑦 ·R 𝑤)) = (-1R ·R (𝑤 ·R 𝑦)))
137, 12oveq12d 5800 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) = ((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦))))
14 mulcomsrg 7589 . . . . 5 ((𝑦R𝑧R) → (𝑦 ·R 𝑧) = (𝑧 ·R 𝑦))
158, 5, 14syl2anc 409 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑦 ·R 𝑧) = (𝑧 ·R 𝑦))
16 mulcomsrg 7589 . . . . 5 ((𝑥R𝑤R) → (𝑥 ·R 𝑤) = (𝑤 ·R 𝑥))
174, 9, 16syl2anc 409 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑥 ·R 𝑤) = (𝑤 ·R 𝑥))
1815, 17oveq12d 5800 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)))
19 mulclsr 7586 . . . . 5 ((𝑧R𝑦R) → (𝑧 ·R 𝑦) ∈ R)
205, 8, 19syl2anc 409 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑧 ·R 𝑦) ∈ R)
21 mulclsr 7586 . . . . 5 ((𝑤R𝑥R) → (𝑤 ·R 𝑥) ∈ R)
229, 4, 21syl2anc 409 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑤 ·R 𝑥) ∈ R)
23 addcomsrg 7587 . . . 4 (((𝑧 ·R 𝑦) ∈ R ∧ (𝑤 ·R 𝑥) ∈ R) → ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦)))
2420, 22, 23syl2anc 409 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦)))
2518, 24eqtrd 2173 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦)))
261, 2, 3, 13, 25ecovicom 6545 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481   E cep 4217  ccnv 4546  (class class class)co 5782  Rcnr 7129  -1Rcm1r 7132   +R cplr 7133   ·R cmr 7134  cc 7642   · cmul 7649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-i1p 7299  df-iplp 7300  df-imp 7301  df-enr 7558  df-nr 7559  df-plr 7560  df-mr 7561  df-m1r 7565  df-c 7650  df-mul 7656
This theorem is referenced by:  rereceu  7721  recriota  7722
  Copyright terms: Public domain W3C validator