Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axmulcom | GIF version |
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 7833 be used later. Instead, use mulcom 7861. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axmulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcnqs 7761 | . 2 ⊢ ℂ = ((R × R) / ◡ E ) | |
2 | mulcnsrec 7763 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ([〈𝑥, 𝑦〉]◡ E · [〈𝑧, 𝑤〉]◡ E ) = [〈((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))〉]◡ E ) | |
3 | mulcnsrec 7763 | . 2 ⊢ (((𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑥 ∈ R ∧ 𝑦 ∈ R)) → ([〈𝑧, 𝑤〉]◡ E · [〈𝑥, 𝑦〉]◡ E ) = [〈((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦))), ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))〉]◡ E ) | |
4 | simpll 519 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → 𝑥 ∈ R) | |
5 | simprl 521 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → 𝑧 ∈ R) | |
6 | mulcomsrg 7677 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑧 ∈ R) → (𝑥 ·R 𝑧) = (𝑧 ·R 𝑥)) | |
7 | 4, 5, 6 | syl2anc 409 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑥 ·R 𝑧) = (𝑧 ·R 𝑥)) |
8 | simplr 520 | . . . . 5 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → 𝑦 ∈ R) | |
9 | simprr 522 | . . . . 5 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → 𝑤 ∈ R) | |
10 | mulcomsrg 7677 | . . . . 5 ⊢ ((𝑦 ∈ R ∧ 𝑤 ∈ R) → (𝑦 ·R 𝑤) = (𝑤 ·R 𝑦)) | |
11 | 8, 9, 10 | syl2anc 409 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑦 ·R 𝑤) = (𝑤 ·R 𝑦)) |
12 | 11 | oveq2d 5840 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (-1R ·R (𝑦 ·R 𝑤)) = (-1R ·R (𝑤 ·R 𝑦))) |
13 | 7, 12 | oveq12d 5842 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) = ((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦)))) |
14 | mulcomsrg 7677 | . . . . 5 ⊢ ((𝑦 ∈ R ∧ 𝑧 ∈ R) → (𝑦 ·R 𝑧) = (𝑧 ·R 𝑦)) | |
15 | 8, 5, 14 | syl2anc 409 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑦 ·R 𝑧) = (𝑧 ·R 𝑦)) |
16 | mulcomsrg 7677 | . . . . 5 ⊢ ((𝑥 ∈ R ∧ 𝑤 ∈ R) → (𝑥 ·R 𝑤) = (𝑤 ·R 𝑥)) | |
17 | 4, 9, 16 | syl2anc 409 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑥 ·R 𝑤) = (𝑤 ·R 𝑥)) |
18 | 15, 17 | oveq12d 5842 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥))) |
19 | mulclsr 7674 | . . . . 5 ⊢ ((𝑧 ∈ R ∧ 𝑦 ∈ R) → (𝑧 ·R 𝑦) ∈ R) | |
20 | 5, 8, 19 | syl2anc 409 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑧 ·R 𝑦) ∈ R) |
21 | mulclsr 7674 | . . . . 5 ⊢ ((𝑤 ∈ R ∧ 𝑥 ∈ R) → (𝑤 ·R 𝑥) ∈ R) | |
22 | 9, 4, 21 | syl2anc 409 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑤 ·R 𝑥) ∈ R) |
23 | addcomsrg 7675 | . . . 4 ⊢ (((𝑧 ·R 𝑦) ∈ R ∧ (𝑤 ·R 𝑥) ∈ R) → ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))) | |
24 | 20, 22, 23 | syl2anc 409 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))) |
25 | 18, 24 | eqtrd 2190 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))) |
26 | 1, 2, 3, 13, 25 | ecovicom 6588 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 E cep 4247 ◡ccnv 4585 (class class class)co 5824 Rcnr 7217 -1Rcm1r 7220 +R cplr 7221 ·R cmr 7222 ℂcc 7730 · cmul 7737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-iinf 4547 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-eprel 4249 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-suc 4331 df-iom 4550 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-ov 5827 df-oprab 5828 df-mpo 5829 df-1st 6088 df-2nd 6089 df-recs 6252 df-irdg 6317 df-1o 6363 df-2o 6364 df-oadd 6367 df-omul 6368 df-er 6480 df-ec 6482 df-qs 6486 df-ni 7224 df-pli 7225 df-mi 7226 df-lti 7227 df-plpq 7264 df-mpq 7265 df-enq 7267 df-nqqs 7268 df-plqqs 7269 df-mqqs 7270 df-1nqqs 7271 df-rq 7272 df-ltnqqs 7273 df-enq0 7344 df-nq0 7345 df-0nq0 7346 df-plq0 7347 df-mq0 7348 df-inp 7386 df-i1p 7387 df-iplp 7388 df-imp 7389 df-enr 7646 df-nr 7647 df-plr 7648 df-mr 7649 df-m1r 7653 df-c 7738 df-mul 7744 |
This theorem is referenced by: rereceu 7809 recriota 7810 |
Copyright terms: Public domain | W3C validator |