Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axmulcom | GIF version |
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 7854 be used later. Instead, use mulcom 7882. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axmulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcnqs 7782 | . 2 ⊢ ℂ = ((R × R) / ◡ E ) | |
2 | mulcnsrec 7784 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ([〈𝑥, 𝑦〉]◡ E · [〈𝑧, 𝑤〉]◡ E ) = [〈((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))〉]◡ E ) | |
3 | mulcnsrec 7784 | . 2 ⊢ (((𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑥 ∈ R ∧ 𝑦 ∈ R)) → ([〈𝑧, 𝑤〉]◡ E · [〈𝑥, 𝑦〉]◡ E ) = [〈((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦))), ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))〉]◡ E ) | |
4 | simpll 519 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → 𝑥 ∈ R) | |
5 | simprl 521 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → 𝑧 ∈ R) | |
6 | mulcomsrg 7698 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑧 ∈ R) → (𝑥 ·R 𝑧) = (𝑧 ·R 𝑥)) | |
7 | 4, 5, 6 | syl2anc 409 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑥 ·R 𝑧) = (𝑧 ·R 𝑥)) |
8 | simplr 520 | . . . . 5 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → 𝑦 ∈ R) | |
9 | simprr 522 | . . . . 5 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → 𝑤 ∈ R) | |
10 | mulcomsrg 7698 | . . . . 5 ⊢ ((𝑦 ∈ R ∧ 𝑤 ∈ R) → (𝑦 ·R 𝑤) = (𝑤 ·R 𝑦)) | |
11 | 8, 9, 10 | syl2anc 409 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑦 ·R 𝑤) = (𝑤 ·R 𝑦)) |
12 | 11 | oveq2d 5858 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (-1R ·R (𝑦 ·R 𝑤)) = (-1R ·R (𝑤 ·R 𝑦))) |
13 | 7, 12 | oveq12d 5860 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) = ((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦)))) |
14 | mulcomsrg 7698 | . . . . 5 ⊢ ((𝑦 ∈ R ∧ 𝑧 ∈ R) → (𝑦 ·R 𝑧) = (𝑧 ·R 𝑦)) | |
15 | 8, 5, 14 | syl2anc 409 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑦 ·R 𝑧) = (𝑧 ·R 𝑦)) |
16 | mulcomsrg 7698 | . . . . 5 ⊢ ((𝑥 ∈ R ∧ 𝑤 ∈ R) → (𝑥 ·R 𝑤) = (𝑤 ·R 𝑥)) | |
17 | 4, 9, 16 | syl2anc 409 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑥 ·R 𝑤) = (𝑤 ·R 𝑥)) |
18 | 15, 17 | oveq12d 5860 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥))) |
19 | mulclsr 7695 | . . . . 5 ⊢ ((𝑧 ∈ R ∧ 𝑦 ∈ R) → (𝑧 ·R 𝑦) ∈ R) | |
20 | 5, 8, 19 | syl2anc 409 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑧 ·R 𝑦) ∈ R) |
21 | mulclsr 7695 | . . . . 5 ⊢ ((𝑤 ∈ R ∧ 𝑥 ∈ R) → (𝑤 ·R 𝑥) ∈ R) | |
22 | 9, 4, 21 | syl2anc 409 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑤 ·R 𝑥) ∈ R) |
23 | addcomsrg 7696 | . . . 4 ⊢ (((𝑧 ·R 𝑦) ∈ R ∧ (𝑤 ·R 𝑥) ∈ R) → ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))) | |
24 | 20, 22, 23 | syl2anc 409 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))) |
25 | 18, 24 | eqtrd 2198 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))) |
26 | 1, 2, 3, 13, 25 | ecovicom 6609 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 E cep 4265 ◡ccnv 4603 (class class class)co 5842 Rcnr 7238 -1Rcm1r 7241 +R cplr 7242 ·R cmr 7243 ℂcc 7751 · cmul 7758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-2o 6385 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-enq0 7365 df-nq0 7366 df-0nq0 7367 df-plq0 7368 df-mq0 7369 df-inp 7407 df-i1p 7408 df-iplp 7409 df-imp 7410 df-enr 7667 df-nr 7668 df-plr 7669 df-mr 7670 df-m1r 7674 df-c 7759 df-mul 7765 |
This theorem is referenced by: rereceu 7830 recriota 7831 |
Copyright terms: Public domain | W3C validator |