![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > axmulcom | GIF version |
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 7926 be used later. Instead, use mulcom 7954. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axmulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcnqs 7854 | . 2 ⊢ ℂ = ((R × R) / ◡ E ) | |
2 | mulcnsrec 7856 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ([〈𝑥, 𝑦〉]◡ E · [〈𝑧, 𝑤〉]◡ E ) = [〈((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))〉]◡ E ) | |
3 | mulcnsrec 7856 | . 2 ⊢ (((𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑥 ∈ R ∧ 𝑦 ∈ R)) → ([〈𝑧, 𝑤〉]◡ E · [〈𝑥, 𝑦〉]◡ E ) = [〈((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦))), ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))〉]◡ E ) | |
4 | simpll 527 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → 𝑥 ∈ R) | |
5 | simprl 529 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → 𝑧 ∈ R) | |
6 | mulcomsrg 7770 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑧 ∈ R) → (𝑥 ·R 𝑧) = (𝑧 ·R 𝑥)) | |
7 | 4, 5, 6 | syl2anc 411 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑥 ·R 𝑧) = (𝑧 ·R 𝑥)) |
8 | simplr 528 | . . . . 5 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → 𝑦 ∈ R) | |
9 | simprr 531 | . . . . 5 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → 𝑤 ∈ R) | |
10 | mulcomsrg 7770 | . . . . 5 ⊢ ((𝑦 ∈ R ∧ 𝑤 ∈ R) → (𝑦 ·R 𝑤) = (𝑤 ·R 𝑦)) | |
11 | 8, 9, 10 | syl2anc 411 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑦 ·R 𝑤) = (𝑤 ·R 𝑦)) |
12 | 11 | oveq2d 5904 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (-1R ·R (𝑦 ·R 𝑤)) = (-1R ·R (𝑤 ·R 𝑦))) |
13 | 7, 12 | oveq12d 5906 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) = ((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦)))) |
14 | mulcomsrg 7770 | . . . . 5 ⊢ ((𝑦 ∈ R ∧ 𝑧 ∈ R) → (𝑦 ·R 𝑧) = (𝑧 ·R 𝑦)) | |
15 | 8, 5, 14 | syl2anc 411 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑦 ·R 𝑧) = (𝑧 ·R 𝑦)) |
16 | mulcomsrg 7770 | . . . . 5 ⊢ ((𝑥 ∈ R ∧ 𝑤 ∈ R) → (𝑥 ·R 𝑤) = (𝑤 ·R 𝑥)) | |
17 | 4, 9, 16 | syl2anc 411 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑥 ·R 𝑤) = (𝑤 ·R 𝑥)) |
18 | 15, 17 | oveq12d 5906 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥))) |
19 | mulclsr 7767 | . . . . 5 ⊢ ((𝑧 ∈ R ∧ 𝑦 ∈ R) → (𝑧 ·R 𝑦) ∈ R) | |
20 | 5, 8, 19 | syl2anc 411 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑧 ·R 𝑦) ∈ R) |
21 | mulclsr 7767 | . . . . 5 ⊢ ((𝑤 ∈ R ∧ 𝑥 ∈ R) → (𝑤 ·R 𝑥) ∈ R) | |
22 | 9, 4, 21 | syl2anc 411 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑤 ·R 𝑥) ∈ R) |
23 | addcomsrg 7768 | . . . 4 ⊢ (((𝑧 ·R 𝑦) ∈ R ∧ (𝑤 ·R 𝑥) ∈ R) → ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))) | |
24 | 20, 22, 23 | syl2anc 411 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))) |
25 | 18, 24 | eqtrd 2220 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))) |
26 | 1, 2, 3, 13, 25 | ecovicom 6657 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1363 ∈ wcel 2158 E cep 4299 ◡ccnv 4637 (class class class)co 5888 Rcnr 7310 -1Rcm1r 7313 +R cplr 7314 ·R cmr 7315 ℂcc 7823 · cmul 7830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-eprel 4301 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-recs 6320 df-irdg 6385 df-1o 6431 df-2o 6432 df-oadd 6435 df-omul 6436 df-er 6549 df-ec 6551 df-qs 6555 df-ni 7317 df-pli 7318 df-mi 7319 df-lti 7320 df-plpq 7357 df-mpq 7358 df-enq 7360 df-nqqs 7361 df-plqqs 7362 df-mqqs 7363 df-1nqqs 7364 df-rq 7365 df-ltnqqs 7366 df-enq0 7437 df-nq0 7438 df-0nq0 7439 df-plq0 7440 df-mq0 7441 df-inp 7479 df-i1p 7480 df-iplp 7481 df-imp 7482 df-enr 7739 df-nr 7740 df-plr 7741 df-mr 7742 df-m1r 7746 df-c 7831 df-mul 7837 |
This theorem is referenced by: rereceu 7902 recriota 7903 |
Copyright terms: Public domain | W3C validator |