ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axmulcom GIF version

Theorem axmulcom 7933
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 7975 be used later. Instead, use mulcom 8003. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axmulcom ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))

Proof of Theorem axmulcom
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 7903 . 2 ℂ = ((R × R) / E )
2 mulcnsrec 7905 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ([⟨𝑥, 𝑦⟩] E · [⟨𝑧, 𝑤⟩] E ) = [⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩] E )
3 mulcnsrec 7905 . 2 (((𝑧R𝑤R) ∧ (𝑥R𝑦R)) → ([⟨𝑧, 𝑤⟩] E · [⟨𝑥, 𝑦⟩] E ) = [⟨((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦))), ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))⟩] E )
4 simpll 527 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → 𝑥R)
5 simprl 529 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → 𝑧R)
6 mulcomsrg 7819 . . . 4 ((𝑥R𝑧R) → (𝑥 ·R 𝑧) = (𝑧 ·R 𝑥))
74, 5, 6syl2anc 411 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑥 ·R 𝑧) = (𝑧 ·R 𝑥))
8 simplr 528 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → 𝑦R)
9 simprr 531 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → 𝑤R)
10 mulcomsrg 7819 . . . . 5 ((𝑦R𝑤R) → (𝑦 ·R 𝑤) = (𝑤 ·R 𝑦))
118, 9, 10syl2anc 411 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑦 ·R 𝑤) = (𝑤 ·R 𝑦))
1211oveq2d 5935 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (-1R ·R (𝑦 ·R 𝑤)) = (-1R ·R (𝑤 ·R 𝑦)))
137, 12oveq12d 5937 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) = ((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦))))
14 mulcomsrg 7819 . . . . 5 ((𝑦R𝑧R) → (𝑦 ·R 𝑧) = (𝑧 ·R 𝑦))
158, 5, 14syl2anc 411 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑦 ·R 𝑧) = (𝑧 ·R 𝑦))
16 mulcomsrg 7819 . . . . 5 ((𝑥R𝑤R) → (𝑥 ·R 𝑤) = (𝑤 ·R 𝑥))
174, 9, 16syl2anc 411 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑥 ·R 𝑤) = (𝑤 ·R 𝑥))
1815, 17oveq12d 5937 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)))
19 mulclsr 7816 . . . . 5 ((𝑧R𝑦R) → (𝑧 ·R 𝑦) ∈ R)
205, 8, 19syl2anc 411 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑧 ·R 𝑦) ∈ R)
21 mulclsr 7816 . . . . 5 ((𝑤R𝑥R) → (𝑤 ·R 𝑥) ∈ R)
229, 4, 21syl2anc 411 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑤 ·R 𝑥) ∈ R)
23 addcomsrg 7817 . . . 4 (((𝑧 ·R 𝑦) ∈ R ∧ (𝑤 ·R 𝑥) ∈ R) → ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦)))
2420, 22, 23syl2anc 411 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦)))
2518, 24eqtrd 2226 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦)))
261, 2, 3, 13, 25ecovicom 6699 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164   E cep 4319  ccnv 4659  (class class class)co 5919  Rcnr 7359  -1Rcm1r 7362   +R cplr 7363   ·R cmr 7364  cc 7872   · cmul 7879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-i1p 7529  df-iplp 7530  df-imp 7531  df-enr 7788  df-nr 7789  df-plr 7790  df-mr 7791  df-m1r 7795  df-c 7880  df-mul 7886
This theorem is referenced by:  rereceu  7951  recriota  7952
  Copyright terms: Public domain W3C validator