ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axmulcom GIF version

Theorem axmulcom 7647
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 7689 be used later. Instead, use mulcom 7717. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axmulcom ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))

Proof of Theorem axmulcom
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 7617 . 2 ℂ = ((R × R) / E )
2 mulcnsrec 7619 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ([⟨𝑥, 𝑦⟩] E · [⟨𝑧, 𝑤⟩] E ) = [⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩] E )
3 mulcnsrec 7619 . 2 (((𝑧R𝑤R) ∧ (𝑥R𝑦R)) → ([⟨𝑧, 𝑤⟩] E · [⟨𝑥, 𝑦⟩] E ) = [⟨((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦))), ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))⟩] E )
4 simpll 503 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → 𝑥R)
5 simprl 505 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → 𝑧R)
6 mulcomsrg 7533 . . . 4 ((𝑥R𝑧R) → (𝑥 ·R 𝑧) = (𝑧 ·R 𝑥))
74, 5, 6syl2anc 408 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑥 ·R 𝑧) = (𝑧 ·R 𝑥))
8 simplr 504 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → 𝑦R)
9 simprr 506 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → 𝑤R)
10 mulcomsrg 7533 . . . . 5 ((𝑦R𝑤R) → (𝑦 ·R 𝑤) = (𝑤 ·R 𝑦))
118, 9, 10syl2anc 408 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑦 ·R 𝑤) = (𝑤 ·R 𝑦))
1211oveq2d 5758 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (-1R ·R (𝑦 ·R 𝑤)) = (-1R ·R (𝑤 ·R 𝑦)))
137, 12oveq12d 5760 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) = ((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦))))
14 mulcomsrg 7533 . . . . 5 ((𝑦R𝑧R) → (𝑦 ·R 𝑧) = (𝑧 ·R 𝑦))
158, 5, 14syl2anc 408 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑦 ·R 𝑧) = (𝑧 ·R 𝑦))
16 mulcomsrg 7533 . . . . 5 ((𝑥R𝑤R) → (𝑥 ·R 𝑤) = (𝑤 ·R 𝑥))
174, 9, 16syl2anc 408 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑥 ·R 𝑤) = (𝑤 ·R 𝑥))
1815, 17oveq12d 5760 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)))
19 mulclsr 7530 . . . . 5 ((𝑧R𝑦R) → (𝑧 ·R 𝑦) ∈ R)
205, 8, 19syl2anc 408 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑧 ·R 𝑦) ∈ R)
21 mulclsr 7530 . . . . 5 ((𝑤R𝑥R) → (𝑤 ·R 𝑥) ∈ R)
229, 4, 21syl2anc 408 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑤 ·R 𝑥) ∈ R)
23 addcomsrg 7531 . . . 4 (((𝑧 ·R 𝑦) ∈ R ∧ (𝑤 ·R 𝑥) ∈ R) → ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦)))
2420, 22, 23syl2anc 408 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦)))
2518, 24eqtrd 2150 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦)))
261, 2, 3, 13, 25ecovicom 6505 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1316  wcel 1465   E cep 4179  ccnv 4508  (class class class)co 5742  Rcnr 7073  -1Rcm1r 7076   +R cplr 7077   ·R cmr 7078  cc 7586   · cmul 7593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-eprel 4181  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-1o 6281  df-2o 6282  df-oadd 6285  df-omul 6286  df-er 6397  df-ec 6399  df-qs 6403  df-ni 7080  df-pli 7081  df-mi 7082  df-lti 7083  df-plpq 7120  df-mpq 7121  df-enq 7123  df-nqqs 7124  df-plqqs 7125  df-mqqs 7126  df-1nqqs 7127  df-rq 7128  df-ltnqqs 7129  df-enq0 7200  df-nq0 7201  df-0nq0 7202  df-plq0 7203  df-mq0 7204  df-inp 7242  df-i1p 7243  df-iplp 7244  df-imp 7245  df-enr 7502  df-nr 7503  df-plr 7504  df-mr 7505  df-m1r 7509  df-c 7594  df-mul 7600
This theorem is referenced by:  rereceu  7665  recriota  7666
  Copyright terms: Public domain W3C validator