ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axmulcom GIF version

Theorem axmulcom 8026
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 8068 be used later. Instead, use mulcom 8096. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axmulcom ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))

Proof of Theorem axmulcom
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 7996 . 2 ℂ = ((R × R) / E )
2 mulcnsrec 7998 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ([⟨𝑥, 𝑦⟩] E · [⟨𝑧, 𝑤⟩] E ) = [⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩] E )
3 mulcnsrec 7998 . 2 (((𝑧R𝑤R) ∧ (𝑥R𝑦R)) → ([⟨𝑧, 𝑤⟩] E · [⟨𝑥, 𝑦⟩] E ) = [⟨((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦))), ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))⟩] E )
4 simpll 527 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → 𝑥R)
5 simprl 529 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → 𝑧R)
6 mulcomsrg 7912 . . . 4 ((𝑥R𝑧R) → (𝑥 ·R 𝑧) = (𝑧 ·R 𝑥))
74, 5, 6syl2anc 411 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑥 ·R 𝑧) = (𝑧 ·R 𝑥))
8 simplr 528 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → 𝑦R)
9 simprr 531 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → 𝑤R)
10 mulcomsrg 7912 . . . . 5 ((𝑦R𝑤R) → (𝑦 ·R 𝑤) = (𝑤 ·R 𝑦))
118, 9, 10syl2anc 411 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑦 ·R 𝑤) = (𝑤 ·R 𝑦))
1211oveq2d 5990 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (-1R ·R (𝑦 ·R 𝑤)) = (-1R ·R (𝑤 ·R 𝑦)))
137, 12oveq12d 5992 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) = ((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦))))
14 mulcomsrg 7912 . . . . 5 ((𝑦R𝑧R) → (𝑦 ·R 𝑧) = (𝑧 ·R 𝑦))
158, 5, 14syl2anc 411 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑦 ·R 𝑧) = (𝑧 ·R 𝑦))
16 mulcomsrg 7912 . . . . 5 ((𝑥R𝑤R) → (𝑥 ·R 𝑤) = (𝑤 ·R 𝑥))
174, 9, 16syl2anc 411 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑥 ·R 𝑤) = (𝑤 ·R 𝑥))
1815, 17oveq12d 5992 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)))
19 mulclsr 7909 . . . . 5 ((𝑧R𝑦R) → (𝑧 ·R 𝑦) ∈ R)
205, 8, 19syl2anc 411 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑧 ·R 𝑦) ∈ R)
21 mulclsr 7909 . . . . 5 ((𝑤R𝑥R) → (𝑤 ·R 𝑥) ∈ R)
229, 4, 21syl2anc 411 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑤 ·R 𝑥) ∈ R)
23 addcomsrg 7910 . . . 4 (((𝑧 ·R 𝑦) ∈ R ∧ (𝑤 ·R 𝑥) ∈ R) → ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦)))
2420, 22, 23syl2anc 411 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦)))
2518, 24eqtrd 2242 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦)))
261, 2, 3, 13, 25ecovicom 6760 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180   E cep 4355  ccnv 4695  (class class class)co 5974  Rcnr 7452  -1Rcm1r 7455   +R cplr 7456   ·R cmr 7457  cc 7965   · cmul 7972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-eprel 4357  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-1o 6532  df-2o 6533  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-pli 7460  df-mi 7461  df-lti 7462  df-plpq 7499  df-mpq 7500  df-enq 7502  df-nqqs 7503  df-plqqs 7504  df-mqqs 7505  df-1nqqs 7506  df-rq 7507  df-ltnqqs 7508  df-enq0 7579  df-nq0 7580  df-0nq0 7581  df-plq0 7582  df-mq0 7583  df-inp 7621  df-i1p 7622  df-iplp 7623  df-imp 7624  df-enr 7881  df-nr 7882  df-plr 7883  df-mr 7884  df-m1r 7888  df-c 7973  df-mul 7979
This theorem is referenced by:  rereceu  8044  recriota  8045
  Copyright terms: Public domain W3C validator