| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axmulcom | GIF version | ||
| Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 7982 be used later. Instead, use mulcom 8010. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axmulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcnqs 7910 | . 2 ⊢ ℂ = ((R × R) / ◡ E ) | |
| 2 | mulcnsrec 7912 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ([〈𝑥, 𝑦〉]◡ E · [〈𝑧, 𝑤〉]◡ E ) = [〈((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))〉]◡ E ) | |
| 3 | mulcnsrec 7912 | . 2 ⊢ (((𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑥 ∈ R ∧ 𝑦 ∈ R)) → ([〈𝑧, 𝑤〉]◡ E · [〈𝑥, 𝑦〉]◡ E ) = [〈((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦))), ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))〉]◡ E ) | |
| 4 | simpll 527 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → 𝑥 ∈ R) | |
| 5 | simprl 529 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → 𝑧 ∈ R) | |
| 6 | mulcomsrg 7826 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑧 ∈ R) → (𝑥 ·R 𝑧) = (𝑧 ·R 𝑥)) | |
| 7 | 4, 5, 6 | syl2anc 411 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑥 ·R 𝑧) = (𝑧 ·R 𝑥)) |
| 8 | simplr 528 | . . . . 5 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → 𝑦 ∈ R) | |
| 9 | simprr 531 | . . . . 5 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → 𝑤 ∈ R) | |
| 10 | mulcomsrg 7826 | . . . . 5 ⊢ ((𝑦 ∈ R ∧ 𝑤 ∈ R) → (𝑦 ·R 𝑤) = (𝑤 ·R 𝑦)) | |
| 11 | 8, 9, 10 | syl2anc 411 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑦 ·R 𝑤) = (𝑤 ·R 𝑦)) |
| 12 | 11 | oveq2d 5939 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (-1R ·R (𝑦 ·R 𝑤)) = (-1R ·R (𝑤 ·R 𝑦))) |
| 13 | 7, 12 | oveq12d 5941 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) = ((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦)))) |
| 14 | mulcomsrg 7826 | . . . . 5 ⊢ ((𝑦 ∈ R ∧ 𝑧 ∈ R) → (𝑦 ·R 𝑧) = (𝑧 ·R 𝑦)) | |
| 15 | 8, 5, 14 | syl2anc 411 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑦 ·R 𝑧) = (𝑧 ·R 𝑦)) |
| 16 | mulcomsrg 7826 | . . . . 5 ⊢ ((𝑥 ∈ R ∧ 𝑤 ∈ R) → (𝑥 ·R 𝑤) = (𝑤 ·R 𝑥)) | |
| 17 | 4, 9, 16 | syl2anc 411 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑥 ·R 𝑤) = (𝑤 ·R 𝑥)) |
| 18 | 15, 17 | oveq12d 5941 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥))) |
| 19 | mulclsr 7823 | . . . . 5 ⊢ ((𝑧 ∈ R ∧ 𝑦 ∈ R) → (𝑧 ·R 𝑦) ∈ R) | |
| 20 | 5, 8, 19 | syl2anc 411 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑧 ·R 𝑦) ∈ R) |
| 21 | mulclsr 7823 | . . . . 5 ⊢ ((𝑤 ∈ R ∧ 𝑥 ∈ R) → (𝑤 ·R 𝑥) ∈ R) | |
| 22 | 9, 4, 21 | syl2anc 411 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑤 ·R 𝑥) ∈ R) |
| 23 | addcomsrg 7824 | . . . 4 ⊢ (((𝑧 ·R 𝑦) ∈ R ∧ (𝑤 ·R 𝑥) ∈ R) → ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))) | |
| 24 | 20, 22, 23 | syl2anc 411 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))) |
| 25 | 18, 24 | eqtrd 2229 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))) |
| 26 | 1, 2, 3, 13, 25 | ecovicom 6703 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 E cep 4323 ◡ccnv 4663 (class class class)co 5923 Rcnr 7366 -1Rcm1r 7369 +R cplr 7370 ·R cmr 7371 ℂcc 7879 · cmul 7886 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6199 df-2nd 6200 df-recs 6364 df-irdg 6429 df-1o 6475 df-2o 6476 df-oadd 6479 df-omul 6480 df-er 6593 df-ec 6595 df-qs 6599 df-ni 7373 df-pli 7374 df-mi 7375 df-lti 7376 df-plpq 7413 df-mpq 7414 df-enq 7416 df-nqqs 7417 df-plqqs 7418 df-mqqs 7419 df-1nqqs 7420 df-rq 7421 df-ltnqqs 7422 df-enq0 7493 df-nq0 7494 df-0nq0 7495 df-plq0 7496 df-mq0 7497 df-inp 7535 df-i1p 7536 df-iplp 7537 df-imp 7538 df-enr 7795 df-nr 7796 df-plr 7797 df-mr 7798 df-m1r 7802 df-c 7887 df-mul 7893 |
| This theorem is referenced by: rereceu 7958 recriota 7959 |
| Copyright terms: Public domain | W3C validator |