ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axmulcom GIF version

Theorem axmulcom 7812
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 7854 be used later. Instead, use mulcom 7882. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axmulcom ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))

Proof of Theorem axmulcom
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 7782 . 2 ℂ = ((R × R) / E )
2 mulcnsrec 7784 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ([⟨𝑥, 𝑦⟩] E · [⟨𝑧, 𝑤⟩] E ) = [⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩] E )
3 mulcnsrec 7784 . 2 (((𝑧R𝑤R) ∧ (𝑥R𝑦R)) → ([⟨𝑧, 𝑤⟩] E · [⟨𝑥, 𝑦⟩] E ) = [⟨((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦))), ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))⟩] E )
4 simpll 519 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → 𝑥R)
5 simprl 521 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → 𝑧R)
6 mulcomsrg 7698 . . . 4 ((𝑥R𝑧R) → (𝑥 ·R 𝑧) = (𝑧 ·R 𝑥))
74, 5, 6syl2anc 409 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑥 ·R 𝑧) = (𝑧 ·R 𝑥))
8 simplr 520 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → 𝑦R)
9 simprr 522 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → 𝑤R)
10 mulcomsrg 7698 . . . . 5 ((𝑦R𝑤R) → (𝑦 ·R 𝑤) = (𝑤 ·R 𝑦))
118, 9, 10syl2anc 409 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑦 ·R 𝑤) = (𝑤 ·R 𝑦))
1211oveq2d 5858 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (-1R ·R (𝑦 ·R 𝑤)) = (-1R ·R (𝑤 ·R 𝑦)))
137, 12oveq12d 5860 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) = ((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦))))
14 mulcomsrg 7698 . . . . 5 ((𝑦R𝑧R) → (𝑦 ·R 𝑧) = (𝑧 ·R 𝑦))
158, 5, 14syl2anc 409 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑦 ·R 𝑧) = (𝑧 ·R 𝑦))
16 mulcomsrg 7698 . . . . 5 ((𝑥R𝑤R) → (𝑥 ·R 𝑤) = (𝑤 ·R 𝑥))
174, 9, 16syl2anc 409 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑥 ·R 𝑤) = (𝑤 ·R 𝑥))
1815, 17oveq12d 5860 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)))
19 mulclsr 7695 . . . . 5 ((𝑧R𝑦R) → (𝑧 ·R 𝑦) ∈ R)
205, 8, 19syl2anc 409 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑧 ·R 𝑦) ∈ R)
21 mulclsr 7695 . . . . 5 ((𝑤R𝑥R) → (𝑤 ·R 𝑥) ∈ R)
229, 4, 21syl2anc 409 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑤 ·R 𝑥) ∈ R)
23 addcomsrg 7696 . . . 4 (((𝑧 ·R 𝑦) ∈ R ∧ (𝑤 ·R 𝑥) ∈ R) → ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦)))
2420, 22, 23syl2anc 409 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦)))
2518, 24eqtrd 2198 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦)))
261, 2, 3, 13, 25ecovicom 6609 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136   E cep 4265  ccnv 4603  (class class class)co 5842  Rcnr 7238  -1Rcm1r 7241   +R cplr 7242   ·R cmr 7243  cc 7751   · cmul 7758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-imp 7410  df-enr 7667  df-nr 7668  df-plr 7669  df-mr 7670  df-m1r 7674  df-c 7759  df-mul 7765
This theorem is referenced by:  rereceu  7830  recriota  7831
  Copyright terms: Public domain W3C validator