| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcom | GIF version | ||
| Description: Alias for ax-mulcom 8108, for naming consistency with mulcomi 8160. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulcom 8108 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 · cmul 8012 |
| This theorem was proved from axioms: ax-mulcom 8108 |
| This theorem is referenced by: adddir 8145 mullid 8152 mulcomi 8160 mulcomd 8176 mul12 8283 mul32 8284 mul31 8285 muladd 8538 subdir 8540 mul01 8543 mulneg2 8550 recextlem1 8806 divmulap3 8832 div23ap 8846 div13ap 8848 div12ap 8849 divmulasscomap 8851 divcanap4 8854 divmul13ap 8870 divmul24ap 8871 divcanap7 8876 div2negap 8890 prodgt02 9008 prodge02 9010 ltmul2 9011 lemul2 9012 lemul2a 9014 ltmulgt12 9020 lemulge12 9022 ltmuldiv2 9030 ltdivmul2 9033 ledivmul2 9035 lemuldiv2 9037 times2 9247 modqcyc2 10590 subsq 10876 cjmulrcl 11406 imval2 11413 abscj 11571 sqabsadd 11574 sqabssub 11575 prod3fmul 12060 prodmodclem3 12094 efcllemp 12177 efexp 12201 sinmul 12263 demoivreALT 12293 dvdsmul1 12332 odd2np1lem 12391 odd2np1 12392 opeo 12416 omeo 12417 modgcd 12520 dvdsgcd 12541 gcdmultiple 12549 coprmdvds 12622 coprmdvds2 12623 qredeq 12626 modprm0 12785 modprmn0modprm0 12787 coprimeprodsq2 12789 cncrng 14541 cnfldui 14561 ef2kpi 15488 sinperlem 15490 sinmpi 15497 cosmpi 15498 sinppi 15499 cosppi 15500 cxpcom 15620 perfectlem1 15681 perfectlem2 15682 perfect 15683 lgsdir2lem4 15718 lgsdir2 15720 lgsquadlem2 15765 lgsquad2 15770 |
| Copyright terms: Public domain | W3C validator |