| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcom | GIF version | ||
| Description: Alias for ax-mulcom 7997, for naming consistency with mulcomi 8049. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulcom 7997 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7894 · cmul 7901 |
| This theorem was proved from axioms: ax-mulcom 7997 |
| This theorem is referenced by: adddir 8034 mullid 8041 mulcomi 8049 mulcomd 8065 mul12 8172 mul32 8173 mul31 8174 muladd 8427 subdir 8429 mul01 8432 mulneg2 8439 recextlem1 8695 divmulap3 8721 div23ap 8735 div13ap 8737 div12ap 8738 divmulasscomap 8740 divcanap4 8743 divmul13ap 8759 divmul24ap 8760 divcanap7 8765 div2negap 8779 prodgt02 8897 prodge02 8899 ltmul2 8900 lemul2 8901 lemul2a 8903 ltmulgt12 8909 lemulge12 8911 ltmuldiv2 8919 ltdivmul2 8922 ledivmul2 8924 lemuldiv2 8926 times2 9136 modqcyc2 10469 subsq 10755 cjmulrcl 11069 imval2 11076 abscj 11234 sqabsadd 11237 sqabssub 11238 prod3fmul 11723 prodmodclem3 11757 efcllemp 11840 efexp 11864 sinmul 11926 demoivreALT 11956 dvdsmul1 11995 odd2np1lem 12054 odd2np1 12055 opeo 12079 omeo 12080 modgcd 12183 dvdsgcd 12204 gcdmultiple 12212 coprmdvds 12285 coprmdvds2 12286 qredeq 12289 modprm0 12448 modprmn0modprm0 12450 coprimeprodsq2 12452 cncrng 14201 cnfldui 14221 ef2kpi 15126 sinperlem 15128 sinmpi 15135 cosmpi 15136 sinppi 15137 cosppi 15138 cxpcom 15258 perfectlem1 15319 perfectlem2 15320 perfect 15321 lgsdir2lem4 15356 lgsdir2 15358 lgsquadlem2 15403 lgsquad2 15408 |
| Copyright terms: Public domain | W3C validator |