![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulcom | GIF version |
Description: Alias for ax-mulcom 7912, for naming consistency with mulcomi 7963. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulcom | โข ((๐ด โ โ โง ๐ต โ โ) โ (๐ด ยท ๐ต) = (๐ต ยท ๐ด)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulcom 7912 | 1 โข ((๐ด โ โ โง ๐ต โ โ) โ (๐ด ยท ๐ต) = (๐ต ยท ๐ด)) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โง wa 104 = wceq 1353 โ wcel 2148 (class class class)co 5875 โcc 7809 ยท cmul 7816 |
This theorem was proved from axioms: ax-mulcom 7912 |
This theorem is referenced by: adddir 7948 mullid 7955 mulcomi 7963 mulcomd 7979 mul12 8086 mul32 8087 mul31 8088 muladd 8341 subdir 8343 mul01 8346 mulneg2 8353 recextlem1 8608 divmulap3 8634 div23ap 8648 div13ap 8650 div12ap 8651 divmulasscomap 8653 divcanap4 8656 divmul13ap 8672 divmul24ap 8673 divcanap7 8678 div2negap 8692 prodgt02 8810 prodge02 8812 ltmul2 8813 lemul2 8814 lemul2a 8816 ltmulgt12 8822 lemulge12 8824 ltmuldiv2 8832 ltdivmul2 8835 ledivmul2 8837 lemuldiv2 8839 times2 9048 modqcyc2 10360 subsq 10627 cjmulrcl 10896 imval2 10903 abscj 11061 sqabsadd 11064 sqabssub 11065 prod3fmul 11549 prodmodclem3 11583 efcllemp 11666 efexp 11690 sinmul 11752 demoivreALT 11781 dvdsmul1 11820 odd2np1lem 11877 odd2np1 11878 opeo 11902 omeo 11903 modgcd 11992 dvdsgcd 12013 gcdmultiple 12021 coprmdvds 12092 coprmdvds2 12093 qredeq 12096 modprm0 12254 modprmn0modprm0 12256 coprimeprodsq2 12258 cncrng 13466 ef2kpi 14230 sinperlem 14232 sinmpi 14239 cosmpi 14240 sinppi 14241 cosppi 14242 cxpcom 14360 lgsdir2lem4 14435 lgsdir2 14437 |
Copyright terms: Public domain | W3C validator |