| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcom | GIF version | ||
| Description: Alias for ax-mulcom 7999, for naming consistency with mulcomi 8051. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulcom 7999 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 · cmul 7903 |
| This theorem was proved from axioms: ax-mulcom 7999 |
| This theorem is referenced by: adddir 8036 mullid 8043 mulcomi 8051 mulcomd 8067 mul12 8174 mul32 8175 mul31 8176 muladd 8429 subdir 8431 mul01 8434 mulneg2 8441 recextlem1 8697 divmulap3 8723 div23ap 8737 div13ap 8739 div12ap 8740 divmulasscomap 8742 divcanap4 8745 divmul13ap 8761 divmul24ap 8762 divcanap7 8767 div2negap 8781 prodgt02 8899 prodge02 8901 ltmul2 8902 lemul2 8903 lemul2a 8905 ltmulgt12 8911 lemulge12 8913 ltmuldiv2 8921 ltdivmul2 8924 ledivmul2 8926 lemuldiv2 8928 times2 9138 modqcyc2 10471 subsq 10757 cjmulrcl 11071 imval2 11078 abscj 11236 sqabsadd 11239 sqabssub 11240 prod3fmul 11725 prodmodclem3 11759 efcllemp 11842 efexp 11866 sinmul 11928 demoivreALT 11958 dvdsmul1 11997 odd2np1lem 12056 odd2np1 12057 opeo 12081 omeo 12082 modgcd 12185 dvdsgcd 12206 gcdmultiple 12214 coprmdvds 12287 coprmdvds2 12288 qredeq 12291 modprm0 12450 modprmn0modprm0 12452 coprimeprodsq2 12454 cncrng 14203 cnfldui 14223 ef2kpi 15150 sinperlem 15152 sinmpi 15159 cosmpi 15160 sinppi 15161 cosppi 15162 cxpcom 15282 perfectlem1 15343 perfectlem2 15344 perfect 15345 lgsdir2lem4 15380 lgsdir2 15382 lgsquadlem2 15427 lgsquad2 15432 |
| Copyright terms: Public domain | W3C validator |