![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulcom | GIF version |
Description: Alias for ax-mulcom 7975, for naming consistency with mulcomi 8027. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulcom 7975 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 (class class class)co 5919 ℂcc 7872 · cmul 7879 |
This theorem was proved from axioms: ax-mulcom 7975 |
This theorem is referenced by: adddir 8012 mullid 8019 mulcomi 8027 mulcomd 8043 mul12 8150 mul32 8151 mul31 8152 muladd 8405 subdir 8407 mul01 8410 mulneg2 8417 recextlem1 8672 divmulap3 8698 div23ap 8712 div13ap 8714 div12ap 8715 divmulasscomap 8717 divcanap4 8720 divmul13ap 8736 divmul24ap 8737 divcanap7 8742 div2negap 8756 prodgt02 8874 prodge02 8876 ltmul2 8877 lemul2 8878 lemul2a 8880 ltmulgt12 8886 lemulge12 8888 ltmuldiv2 8896 ltdivmul2 8899 ledivmul2 8901 lemuldiv2 8903 times2 9113 modqcyc2 10434 subsq 10720 cjmulrcl 11034 imval2 11041 abscj 11199 sqabsadd 11202 sqabssub 11203 prod3fmul 11687 prodmodclem3 11721 efcllemp 11804 efexp 11828 sinmul 11890 demoivreALT 11920 dvdsmul1 11959 odd2np1lem 12016 odd2np1 12017 opeo 12041 omeo 12042 modgcd 12131 dvdsgcd 12152 gcdmultiple 12160 coprmdvds 12233 coprmdvds2 12234 qredeq 12237 modprm0 12395 modprmn0modprm0 12397 coprimeprodsq2 12399 cncrng 14068 cnfldui 14088 ef2kpi 14982 sinperlem 14984 sinmpi 14991 cosmpi 14992 sinppi 14993 cosppi 14994 cxpcom 15112 lgsdir2lem4 15188 lgsdir2 15190 lgsquadlem2 15235 lgsquad2 15240 |
Copyright terms: Public domain | W3C validator |