| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcom | GIF version | ||
| Description: Alias for ax-mulcom 8088, for naming consistency with mulcomi 8140. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulcom 8088 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 (class class class)co 5994 ℂcc 7985 · cmul 7992 |
| This theorem was proved from axioms: ax-mulcom 8088 |
| This theorem is referenced by: adddir 8125 mullid 8132 mulcomi 8140 mulcomd 8156 mul12 8263 mul32 8264 mul31 8265 muladd 8518 subdir 8520 mul01 8523 mulneg2 8530 recextlem1 8786 divmulap3 8812 div23ap 8826 div13ap 8828 div12ap 8829 divmulasscomap 8831 divcanap4 8834 divmul13ap 8850 divmul24ap 8851 divcanap7 8856 div2negap 8870 prodgt02 8988 prodge02 8990 ltmul2 8991 lemul2 8992 lemul2a 8994 ltmulgt12 9000 lemulge12 9002 ltmuldiv2 9010 ltdivmul2 9013 ledivmul2 9015 lemuldiv2 9017 times2 9227 modqcyc2 10569 subsq 10855 cjmulrcl 11384 imval2 11391 abscj 11549 sqabsadd 11552 sqabssub 11553 prod3fmul 12038 prodmodclem3 12072 efcllemp 12155 efexp 12179 sinmul 12241 demoivreALT 12271 dvdsmul1 12310 odd2np1lem 12369 odd2np1 12370 opeo 12394 omeo 12395 modgcd 12498 dvdsgcd 12519 gcdmultiple 12527 coprmdvds 12600 coprmdvds2 12601 qredeq 12604 modprm0 12763 modprmn0modprm0 12765 coprimeprodsq2 12767 cncrng 14518 cnfldui 14538 ef2kpi 15465 sinperlem 15467 sinmpi 15474 cosmpi 15475 sinppi 15476 cosppi 15477 cxpcom 15597 perfectlem1 15658 perfectlem2 15659 perfect 15660 lgsdir2lem4 15695 lgsdir2 15697 lgsquadlem2 15742 lgsquad2 15747 |
| Copyright terms: Public domain | W3C validator |