| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcom | GIF version | ||
| Description: Alias for ax-mulcom 8039, for naming consistency with mulcomi 8091. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulcom 8039 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 (class class class)co 5954 ℂcc 7936 · cmul 7943 |
| This theorem was proved from axioms: ax-mulcom 8039 |
| This theorem is referenced by: adddir 8076 mullid 8083 mulcomi 8091 mulcomd 8107 mul12 8214 mul32 8215 mul31 8216 muladd 8469 subdir 8471 mul01 8474 mulneg2 8481 recextlem1 8737 divmulap3 8763 div23ap 8777 div13ap 8779 div12ap 8780 divmulasscomap 8782 divcanap4 8785 divmul13ap 8801 divmul24ap 8802 divcanap7 8807 div2negap 8821 prodgt02 8939 prodge02 8941 ltmul2 8942 lemul2 8943 lemul2a 8945 ltmulgt12 8951 lemulge12 8953 ltmuldiv2 8961 ltdivmul2 8964 ledivmul2 8966 lemuldiv2 8968 times2 9178 modqcyc2 10518 subsq 10804 cjmulrcl 11248 imval2 11255 abscj 11413 sqabsadd 11416 sqabssub 11417 prod3fmul 11902 prodmodclem3 11936 efcllemp 12019 efexp 12043 sinmul 12105 demoivreALT 12135 dvdsmul1 12174 odd2np1lem 12233 odd2np1 12234 opeo 12258 omeo 12259 modgcd 12362 dvdsgcd 12383 gcdmultiple 12391 coprmdvds 12464 coprmdvds2 12465 qredeq 12468 modprm0 12627 modprmn0modprm0 12629 coprimeprodsq2 12631 cncrng 14381 cnfldui 14401 ef2kpi 15328 sinperlem 15330 sinmpi 15337 cosmpi 15338 sinppi 15339 cosppi 15340 cxpcom 15460 perfectlem1 15521 perfectlem2 15522 perfect 15523 lgsdir2lem4 15558 lgsdir2 15560 lgsquadlem2 15605 lgsquad2 15610 |
| Copyright terms: Public domain | W3C validator |