![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulcom | GIF version |
Description: Alias for ax-mulcom 7500, for naming consistency with mulcomi 7548. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulcom 7500 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1290 ∈ wcel 1439 (class class class)co 5666 ℂcc 7402 · cmul 7409 |
This theorem was proved from axioms: ax-mulcom 7500 |
This theorem is referenced by: adddir 7533 mulid2 7540 mulcomi 7548 mulcomd 7563 mul12 7665 mul32 7666 mul31 7667 muladd 7916 subdir 7918 mul01 7921 mulneg2 7928 recextlem1 8174 divmulap3 8198 div23ap 8212 div13ap 8214 div12ap 8215 divmulasscomap 8217 divcanap4 8220 divmul13ap 8236 divmul24ap 8237 divcanap7 8242 div2negap 8256 prodgt02 8368 prodge02 8370 ltmul2 8371 lemul2 8372 lemul2a 8374 ltmulgt12 8380 lemulge12 8382 ltmuldiv2 8390 ltdivmul2 8393 ledivmul2 8395 lemuldiv2 8397 times2 8599 modqcyc2 9821 subsq 10115 cjmulrcl 10375 imval2 10382 abscj 10539 sqabsadd 10542 sqabssub 10543 efcllemp 11002 efexp 11026 sinmul 11089 demoivreALT 11117 dvdsmul1 11150 odd2np1lem 11204 odd2np1 11205 opeo 11229 omeo 11230 modgcd 11314 dvdsgcd 11333 gcdmultiple 11341 coprmdvds 11406 coprmdvds2 11407 qredeq 11410 |
Copyright terms: Public domain | W3C validator |