| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mulcom | GIF version | ||
| Description: Alias for ax-mulcom 7980, for naming consistency with mulcomi 8032. (Contributed by NM, 10-Mar-2008.) | 
| Ref | Expression | 
|---|---|
| mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-mulcom 7980 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 (class class class)co 5922 ℂcc 7877 · cmul 7884 | 
| This theorem was proved from axioms: ax-mulcom 7980 | 
| This theorem is referenced by: adddir 8017 mullid 8024 mulcomi 8032 mulcomd 8048 mul12 8155 mul32 8156 mul31 8157 muladd 8410 subdir 8412 mul01 8415 mulneg2 8422 recextlem1 8678 divmulap3 8704 div23ap 8718 div13ap 8720 div12ap 8721 divmulasscomap 8723 divcanap4 8726 divmul13ap 8742 divmul24ap 8743 divcanap7 8748 div2negap 8762 prodgt02 8880 prodge02 8882 ltmul2 8883 lemul2 8884 lemul2a 8886 ltmulgt12 8892 lemulge12 8894 ltmuldiv2 8902 ltdivmul2 8905 ledivmul2 8907 lemuldiv2 8909 times2 9119 modqcyc2 10452 subsq 10738 cjmulrcl 11052 imval2 11059 abscj 11217 sqabsadd 11220 sqabssub 11221 prod3fmul 11706 prodmodclem3 11740 efcllemp 11823 efexp 11847 sinmul 11909 demoivreALT 11939 dvdsmul1 11978 odd2np1lem 12037 odd2np1 12038 opeo 12062 omeo 12063 modgcd 12158 dvdsgcd 12179 gcdmultiple 12187 coprmdvds 12260 coprmdvds2 12261 qredeq 12264 modprm0 12423 modprmn0modprm0 12425 coprimeprodsq2 12427 cncrng 14125 cnfldui 14145 ef2kpi 15042 sinperlem 15044 sinmpi 15051 cosmpi 15052 sinppi 15053 cosppi 15054 cxpcom 15174 perfectlem1 15235 perfectlem2 15236 perfect 15237 lgsdir2lem4 15272 lgsdir2 15274 lgsquadlem2 15319 lgsquad2 15324 | 
| Copyright terms: Public domain | W3C validator |