![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulcom | GIF version |
Description: Alias for ax-mulcom 7973, for naming consistency with mulcomi 8025. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulcom 7973 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 · cmul 7877 |
This theorem was proved from axioms: ax-mulcom 7973 |
This theorem is referenced by: adddir 8010 mullid 8017 mulcomi 8025 mulcomd 8041 mul12 8148 mul32 8149 mul31 8150 muladd 8403 subdir 8405 mul01 8408 mulneg2 8415 recextlem1 8670 divmulap3 8696 div23ap 8710 div13ap 8712 div12ap 8713 divmulasscomap 8715 divcanap4 8718 divmul13ap 8734 divmul24ap 8735 divcanap7 8740 div2negap 8754 prodgt02 8872 prodge02 8874 ltmul2 8875 lemul2 8876 lemul2a 8878 ltmulgt12 8884 lemulge12 8886 ltmuldiv2 8894 ltdivmul2 8897 ledivmul2 8899 lemuldiv2 8901 times2 9111 modqcyc2 10431 subsq 10717 cjmulrcl 11031 imval2 11038 abscj 11196 sqabsadd 11199 sqabssub 11200 prod3fmul 11684 prodmodclem3 11718 efcllemp 11801 efexp 11825 sinmul 11887 demoivreALT 11917 dvdsmul1 11956 odd2np1lem 12013 odd2np1 12014 opeo 12038 omeo 12039 modgcd 12128 dvdsgcd 12149 gcdmultiple 12157 coprmdvds 12230 coprmdvds2 12231 qredeq 12234 modprm0 12392 modprmn0modprm0 12394 coprimeprodsq2 12396 cncrng 14057 cnfldui 14077 ef2kpi 14941 sinperlem 14943 sinmpi 14950 cosmpi 14951 sinppi 14952 cosppi 14953 cxpcom 15071 lgsdir2lem4 15147 lgsdir2 15149 |
Copyright terms: Public domain | W3C validator |