| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axmulrcl | GIF version | ||
| Description: Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl 8066 be used later. Instead, in most cases use remulcl 8095. (New usage is discouraged.) (Contributed by NM, 31-Mar-1996.) |
| Ref | Expression |
|---|---|
| axmulrcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal 7983 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
| 2 | elreal 7983 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
| 3 | oveq1 5981 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 · 〈𝑦, 0R〉) = (𝐴 · 〈𝑦, 0R〉)) | |
| 4 | 3 | eleq1d 2278 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 · 〈𝑦, 0R〉) ∈ ℝ ↔ (𝐴 · 〈𝑦, 0R〉) ∈ ℝ)) |
| 5 | oveq2 5982 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 · 〈𝑦, 0R〉) = (𝐴 · 𝐵)) | |
| 6 | 5 | eleq1d 2278 | . 2 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 · 〈𝑦, 0R〉) ∈ ℝ ↔ (𝐴 · 𝐵) ∈ ℝ)) |
| 7 | mulresr 7993 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 · 〈𝑦, 0R〉) = 〈(𝑥 ·R 𝑦), 0R〉) | |
| 8 | mulclsr 7909 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑥 ·R 𝑦) ∈ R) | |
| 9 | opelreal 7982 | . . . 4 ⊢ (〈(𝑥 ·R 𝑦), 0R〉 ∈ ℝ ↔ (𝑥 ·R 𝑦) ∈ R) | |
| 10 | 8, 9 | sylibr 134 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → 〈(𝑥 ·R 𝑦), 0R〉 ∈ ℝ) |
| 11 | 7, 10 | eqeltrd 2286 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 · 〈𝑦, 0R〉) ∈ ℝ) |
| 12 | 1, 2, 4, 6, 11 | 2gencl 2813 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 〈cop 3649 (class class class)co 5974 Rcnr 7452 0Rc0r 7453 ·R cmr 7457 ℝcr 7966 · cmul 7972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-eprel 4357 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-1o 6532 df-2o 6533 df-oadd 6536 df-omul 6537 df-er 6650 df-ec 6652 df-qs 6656 df-ni 7459 df-pli 7460 df-mi 7461 df-lti 7462 df-plpq 7499 df-mpq 7500 df-enq 7502 df-nqqs 7503 df-plqqs 7504 df-mqqs 7505 df-1nqqs 7506 df-rq 7507 df-ltnqqs 7508 df-enq0 7579 df-nq0 7580 df-0nq0 7581 df-plq0 7582 df-mq0 7583 df-inp 7621 df-i1p 7622 df-iplp 7623 df-imp 7624 df-enr 7881 df-nr 7882 df-plr 7883 df-mr 7884 df-0r 7886 df-m1r 7888 df-c 7973 df-r 7977 df-mul 7979 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |