Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axmulrcl | GIF version |
Description: Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl 7833 be used later. Instead, in most cases use remulcl 7862. (New usage is discouraged.) (Contributed by NM, 31-Mar-1996.) |
Ref | Expression |
---|---|
axmulrcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 7750 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
2 | elreal 7750 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
3 | oveq1 5833 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 · 〈𝑦, 0R〉) = (𝐴 · 〈𝑦, 0R〉)) | |
4 | 3 | eleq1d 2226 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 · 〈𝑦, 0R〉) ∈ ℝ ↔ (𝐴 · 〈𝑦, 0R〉) ∈ ℝ)) |
5 | oveq2 5834 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 · 〈𝑦, 0R〉) = (𝐴 · 𝐵)) | |
6 | 5 | eleq1d 2226 | . 2 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 · 〈𝑦, 0R〉) ∈ ℝ ↔ (𝐴 · 𝐵) ∈ ℝ)) |
7 | mulresr 7760 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 · 〈𝑦, 0R〉) = 〈(𝑥 ·R 𝑦), 0R〉) | |
8 | mulclsr 7676 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑥 ·R 𝑦) ∈ R) | |
9 | opelreal 7749 | . . . 4 ⊢ (〈(𝑥 ·R 𝑦), 0R〉 ∈ ℝ ↔ (𝑥 ·R 𝑦) ∈ R) | |
10 | 8, 9 | sylibr 133 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → 〈(𝑥 ·R 𝑦), 0R〉 ∈ ℝ) |
11 | 7, 10 | eqeltrd 2234 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 · 〈𝑦, 0R〉) ∈ ℝ) |
12 | 1, 2, 4, 6, 11 | 2gencl 2745 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 〈cop 3564 (class class class)co 5826 Rcnr 7219 0Rc0r 7220 ·R cmr 7224 ℝcr 7733 · cmul 7739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4081 ax-sep 4084 ax-nul 4092 ax-pow 4137 ax-pr 4171 ax-un 4395 ax-setind 4498 ax-iinf 4549 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3396 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-int 3810 df-iun 3853 df-br 3968 df-opab 4028 df-mpt 4029 df-tr 4065 df-eprel 4251 df-id 4255 df-po 4258 df-iso 4259 df-iord 4328 df-on 4330 df-suc 4333 df-iom 4552 df-xp 4594 df-rel 4595 df-cnv 4596 df-co 4597 df-dm 4598 df-rn 4599 df-res 4600 df-ima 4601 df-iota 5137 df-fun 5174 df-fn 5175 df-f 5176 df-f1 5177 df-fo 5178 df-f1o 5179 df-fv 5180 df-ov 5829 df-oprab 5830 df-mpo 5831 df-1st 6090 df-2nd 6091 df-recs 6254 df-irdg 6319 df-1o 6365 df-2o 6366 df-oadd 6369 df-omul 6370 df-er 6482 df-ec 6484 df-qs 6488 df-ni 7226 df-pli 7227 df-mi 7228 df-lti 7229 df-plpq 7266 df-mpq 7267 df-enq 7269 df-nqqs 7270 df-plqqs 7271 df-mqqs 7272 df-1nqqs 7273 df-rq 7274 df-ltnqqs 7275 df-enq0 7346 df-nq0 7347 df-0nq0 7348 df-plq0 7349 df-mq0 7350 df-inp 7388 df-i1p 7389 df-iplp 7390 df-imp 7391 df-enr 7648 df-nr 7649 df-plr 7650 df-mr 7651 df-0r 7653 df-m1r 7655 df-c 7740 df-r 7744 df-mul 7746 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |