Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > remulcl | GIF version |
Description: Alias for ax-mulrcl 7852, for naming consistency with remulcli 7913. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
remulcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulrcl 7852 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 (class class class)co 5842 ℝcr 7752 · cmul 7758 |
This theorem was proved from axioms: ax-mulrcl 7852 |
This theorem is referenced by: remulcli 7913 remulcld 7929 axmulgt0 7970 msqge0 8514 mulge0 8517 recexaplem2 8549 recexap 8550 ltmul12a 8755 lemul12b 8756 mulgt1 8758 ltdivmul 8771 cju 8856 addltmul 9093 zmulcl 9244 irrmul 9585 rpmulcl 9614 ge0mulcl 9918 iccdil 9934 reexpcl 10472 reexpclzap 10475 expge0 10491 expge1 10492 expubnd 10512 bernneq 10575 faclbnd 10654 faclbnd3 10656 facavg 10659 crre 10799 remim 10802 mulreap 10806 amgm2 11060 fprodrecl 11549 fprodreclf 11555 efcllemp 11599 ege2le3 11612 ef01bndlem 11697 cos01gt0 11703 dveflem 13327 sinq12gt0 13391 tangtx 13399 coskpi 13409 relogexp 13433 logcxp 13458 rpabscxpbnd 13499 |
Copyright terms: Public domain | W3C validator |