Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > remulcl | GIF version |
Description: Alias for ax-mulrcl 7825, for naming consistency with remulcli 7886. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
remulcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulrcl 7825 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2128 (class class class)co 5821 ℝcr 7725 · cmul 7731 |
This theorem was proved from axioms: ax-mulrcl 7825 |
This theorem is referenced by: remulcli 7886 remulcld 7902 axmulgt0 7943 msqge0 8485 mulge0 8488 recexaplem2 8520 recexap 8521 ltmul12a 8725 lemul12b 8726 mulgt1 8728 ltdivmul 8741 cju 8826 addltmul 9063 zmulcl 9214 irrmul 9549 rpmulcl 9578 ge0mulcl 9879 iccdil 9895 reexpcl 10429 reexpclzap 10432 expge0 10448 expge1 10449 expubnd 10469 bernneq 10531 faclbnd 10608 faclbnd3 10610 facavg 10613 crre 10750 remim 10753 mulreap 10757 amgm2 11011 fprodrecl 11498 fprodreclf 11504 efcllemp 11548 ege2le3 11561 ef01bndlem 11646 cos01gt0 11652 dveflem 13058 sinq12gt0 13122 tangtx 13130 coskpi 13140 relogexp 13164 logcxp 13189 rpabscxpbnd 13230 |
Copyright terms: Public domain | W3C validator |