Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > remulcl | GIF version |
Description: Alias for ax-mulrcl 7873, for naming consistency with remulcli 7934. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
remulcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulrcl 7873 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 (class class class)co 5853 ℝcr 7773 · cmul 7779 |
This theorem was proved from axioms: ax-mulrcl 7873 |
This theorem is referenced by: remulcli 7934 remulcld 7950 axmulgt0 7991 msqge0 8535 mulge0 8538 recexaplem2 8570 recexap 8571 ltmul12a 8776 lemul12b 8777 mulgt1 8779 ltdivmul 8792 cju 8877 addltmul 9114 zmulcl 9265 irrmul 9606 rpmulcl 9635 ge0mulcl 9939 iccdil 9955 reexpcl 10493 reexpclzap 10496 expge0 10512 expge1 10513 expubnd 10533 bernneq 10596 faclbnd 10675 faclbnd3 10677 facavg 10680 crre 10821 remim 10824 mulreap 10828 amgm2 11082 fprodrecl 11571 fprodreclf 11577 efcllemp 11621 ege2le3 11634 ef01bndlem 11719 cos01gt0 11725 dveflem 13481 sinq12gt0 13545 tangtx 13553 coskpi 13563 relogexp 13587 logcxp 13612 rpabscxpbnd 13653 |
Copyright terms: Public domain | W3C validator |