| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ax-pow | GIF version | ||
| Description: Axiom of Power Sets.  An
axiom of Intuitionistic Zermelo-Fraenkel set
       theory.  It states that a set 𝑦 exists that includes the power set
       of a given set 𝑥 i.e. contains every subset of 𝑥.  This
is
       Axiom 8 of [Crosilla] p.  "Axioms
of CZF and IZF" except (a) unnecessary
       quantifiers are removed, and (b) Crosilla has a biconditional rather
       than an implication (but the two are equivalent by bm1.3ii 4154).
 The variant axpow2 4209 uses explicit subset notation. A version using class notation is pwex 4216. (Contributed by NM, 5-Aug-1993.)  | 
| Ref | Expression | 
|---|---|
| ax-pow | ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vw | . . . . . . 7 setvar 𝑤 | |
| 2 | vz | . . . . . . 7 setvar 𝑧 | |
| 3 | 1, 2 | wel 2168 | . . . . . 6 wff 𝑤 ∈ 𝑧 | 
| 4 | vx | . . . . . . 7 setvar 𝑥 | |
| 5 | 1, 4 | wel 2168 | . . . . . 6 wff 𝑤 ∈ 𝑥 | 
| 6 | 3, 5 | wi 4 | . . . . 5 wff (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) | 
| 7 | 6, 1 | wal 1362 | . . . 4 wff ∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) | 
| 8 | vy | . . . . 5 setvar 𝑦 | |
| 9 | 2, 8 | wel 2168 | . . . 4 wff 𝑧 ∈ 𝑦 | 
| 10 | 7, 9 | wi 4 | . . 3 wff (∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | 
| 11 | 10, 2 | wal 1362 | . 2 wff ∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | 
| 12 | 11, 8 | wex 1506 | 1 wff ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | 
| Colors of variables: wff set class | 
| This axiom is referenced by: zfpow 4208 axpow2 4209 | 
| Copyright terms: Public domain | W3C validator |