Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axpow2 | GIF version |
Description: A variant of the Axiom of Power Sets ax-pow 4130 using subset notation. Problem in {BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
Ref | Expression |
---|---|
axpow2 | ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pow 4130 | . 2 ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | |
2 | dfss2 3113 | . . . . 5 ⊢ (𝑧 ⊆ 𝑥 ↔ ∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥)) | |
3 | 2 | imbi1i 237 | . . . 4 ⊢ ((𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ (∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
4 | 3 | albii 1447 | . . 3 ⊢ (∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
5 | 4 | exbii 1582 | . 2 ⊢ (∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
6 | 1, 5 | mpbir 145 | 1 ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1330 ∃wex 1469 ⊆ wss 3098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-11 1483 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 ax-pow 4130 |
This theorem depends on definitions: df-bi 116 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-in 3104 df-ss 3111 |
This theorem is referenced by: axpow3 4133 vpwex 4135 |
Copyright terms: Public domain | W3C validator |