| Intuitionistic Logic Explorer Theorem List (p. 42 of 161) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | brdif 4101 | The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.) |
| ⊢ (𝐴(𝑅 ∖ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵)) | ||
| Theorem | sbcbrg 4102 | Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ (𝐴 ∈ 𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶)) | ||
| Theorem | sbcbr12g 4103* | Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) |
| ⊢ (𝐴 ∈ 𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) | ||
| Theorem | sbcbr1g 4104* | Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) |
| ⊢ (𝐴 ∈ 𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅𝐶)) | ||
| Theorem | sbcbr2g 4105* | Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) |
| ⊢ (𝐴 ∈ 𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ 𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) | ||
| Theorem | brralrspcev 4106* | Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.) |
| ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) | ||
| Theorem | brimralrspcev 4107* | Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022.) |
| ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 ((𝜑 ∧ 𝐴𝑅𝐵) → 𝜓)) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝜑 ∧ 𝐴𝑅𝑥) → 𝜓)) | ||
| Syntax | copab 4108 | Extend class notation to include ordered-pair class abstraction (class builder). |
| class {〈𝑥, 𝑦〉 ∣ 𝜑} | ||
| Syntax | cmpt 4109 | Extend the definition of a class to include maps-to notation for defining a function via a rule. |
| class (𝑥 ∈ 𝐴 ↦ 𝐵) | ||
| Definition | df-opab 4110* | Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition doesn't strictly require it. The brace notation is called "class abstraction" by Quine; it is also (more commonly) called a "class builder" in the literature. (Contributed by NM, 4-Jul-1994.) |
| ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | ||
| Definition | df-mpt 4111* | Define maps-to notation for defining a function via a rule. Read as "the function defined by the map from 𝑥 (in 𝐴) to 𝐵(𝑥)". The class expression 𝐵 is the value of the function at 𝑥 and normally contains the variable 𝑥. Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.) |
| ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | ||
| Theorem | opabss 4112* | The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ⊆ 𝑅 | ||
| Theorem | opabbid 4113 | Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) | ||
| Theorem | opabbidv 4114* | Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) | ||
| Theorem | opabbii 4115 | Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} | ||
| Theorem | nfopab 4116* | Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.) |
| ⊢ Ⅎ𝑧𝜑 ⇒ ⊢ Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑} | ||
| Theorem | nfopab1 4117 | The first abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | ||
| Theorem | nfopab2 4118 | The second abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | ||
| Theorem | cbvopab 4119* | Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 14-Sep-2003.) |
| ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑤〉 ∣ 𝜓} | ||
| Theorem | cbvopabv 4120* | Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.) |
| ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑤〉 ∣ 𝜓} | ||
| Theorem | cbvopab1 4121* | Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜓} | ||
| Theorem | cbvopab2 4122* | Change second bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 22-Aug-2013.) |
| ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑧〉 ∣ 𝜓} | ||
| Theorem | cbvopab1s 4123* | Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 31-Jul-2003.) |
| ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ [𝑧 / 𝑥]𝜑} | ||
| Theorem | cbvopab1v 4124* | Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
| ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜓} | ||
| Theorem | cbvopab2v 4125* | Rule used to change the second bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 2-Sep-1999.) |
| ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑧〉 ∣ 𝜓} | ||
| Theorem | csbopabg 4126* | Move substitution into a class abstraction. (Contributed by NM, 6-Aug-2007.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝜑}) | ||
| Theorem | unopab 4127 | Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.) |
| ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∪ {〈𝑥, 𝑦〉 ∣ 𝜓}) = {〈𝑥, 𝑦〉 ∣ (𝜑 ∨ 𝜓)} | ||
| Theorem | mpteq12f 4128 | An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| ⊢ ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
| Theorem | mpteq12dva 4129* | An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
| Theorem | mpteq12dv 4130* | An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.) |
| ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
| Theorem | mpteq12 4131* | An equality theorem for the maps-to notation. (Contributed by NM, 16-Dec-2013.) |
| ⊢ ((𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
| Theorem | mpteq1 4132* | An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
| Theorem | mpteq1d 4133* | An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 11-Jun-2016.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
| Theorem | mpteq2ia 4134 | An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) | ||
| Theorem | mpteq2i 4135 | An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| ⊢ 𝐵 = 𝐶 ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) | ||
| Theorem | mpteq12i 4136 | An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.) |
| ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷) | ||
| Theorem | mpteq2da 4137 | Slightly more general equality inference for the maps-to notation. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | ||
| Theorem | mpteq2dva 4138* | Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | ||
| Theorem | mpteq2dv 4139* | An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | ||
| Theorem | nfmpt 4140* | Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) | ||
| Theorem | nfmpt1 4141 | Bound-variable hypothesis builder for the maps-to notation. (Contributed by FL, 17-Feb-2008.) |
| ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | ||
| Theorem | cbvmptf 4142* | Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Thierry Arnoux, 9-Mar-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) | ||
| Theorem | cbvmpt 4143* | Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) |
| ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) | ||
| Theorem | cbvmptv 4144* | Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) | ||
| Theorem | mptv 4145* | Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.) |
| ⊢ (𝑥 ∈ V ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐵} | ||
| Syntax | wtr 4146 | Extend wff notation to include transitive classes. Notation from [TakeutiZaring] p. 35. |
| wff Tr 𝐴 | ||
| Definition | df-tr 4147 | Define the transitive class predicate. Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 4148 (which is suggestive of the word "transitive"), dftr3 4150, dftr4 4151, and dftr5 4149. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.) |
| ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | ||
| Theorem | dftr2 4148* | An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. (Contributed by NM, 24-Apr-1994.) |
| ⊢ (Tr 𝐴 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) | ||
| Theorem | dftr5 4149* | An alternate way of defining a transitive class. (Contributed by NM, 20-Mar-2004.) |
| ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴) | ||
| Theorem | dftr3 4150* | An alternate way of defining a transitive class. Definition 7.1 of [TakeutiZaring] p. 35. (Contributed by NM, 29-Aug-1993.) |
| ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | ||
| Theorem | dftr4 4151 | An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.) |
| ⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) | ||
| Theorem | treq 4152 | Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.) |
| ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) | ||
| Theorem | trel 4153 | In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴)) | ||
| Theorem | trel3 4154 | In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) |
| ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴) → 𝐵 ∈ 𝐴)) | ||
| Theorem | trss 4155 | An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) |
| ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | ||
| Theorem | trin 4156 | The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.) |
| ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴 ∩ 𝐵)) | ||
| Theorem | tr0 4157 | The empty set is transitive. (Contributed by NM, 16-Sep-1993.) |
| ⊢ Tr ∅ | ||
| Theorem | trv 4158 | The universe is transitive. (Contributed by NM, 14-Sep-2003.) |
| ⊢ Tr V | ||
| Theorem | triun 4159* | The indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.) |
| ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∪ 𝑥 ∈ 𝐴 𝐵) | ||
| Theorem | truni 4160* | The union of a class of transitive sets is transitive. Exercise 5(a) of [Enderton] p. 73. (Contributed by Scott Fenton, 21-Feb-2011.) (Proof shortened by Mario Carneiro, 26-Apr-2014.) |
| ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝐴) | ||
| Theorem | trint 4161* | The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. (Contributed by Scott Fenton, 25-Feb-2011.) |
| ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩ 𝐴) | ||
| Theorem | trintssm 4162* | Any inhabited transitive class includes its intersection. Similar to Exercise 3 in [TakeutiZaring] p. 44 (which mistakenly does not include the inhabitedness hypothesis). (Contributed by Jim Kingdon, 22-Aug-2018.) |
| ⊢ ((Tr 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∩ 𝐴 ⊆ 𝐴) | ||
| Axiom | ax-coll 4163* | Axiom of Collection. Axiom 7 of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed). It is similar to bnd 4220 but uses a freeness hypothesis in place of one of the distinct variable conditions. (Contributed by Jim Kingdon, 23-Aug-2018.) |
| ⊢ Ⅎ𝑏𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑) | ||
| Theorem | repizf 4164* | Axiom of Replacement. Axiom 7' of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed). In our context this is not an axiom, but a theorem proved from ax-coll 4163. It is identical to zfrep6 4165 except for the choice of a freeness hypothesis rather than a disjoint variable condition between 𝑏 and 𝜑. (Contributed by Jim Kingdon, 23-Aug-2018.) |
| ⊢ Ⅎ𝑏𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝑎 ∃!𝑦𝜑 → ∃𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑) | ||
| Theorem | zfrep6 4165* | A version of the Axiom of Replacement. Normally 𝜑 would have free variables 𝑥 and 𝑦. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 4166 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version. (Contributed by NM, 10-Oct-2003.) |
| ⊢ (∀𝑥 ∈ 𝑧 ∃!𝑦𝜑 → ∃𝑤∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑤 𝜑) | ||
| Axiom | ax-sep 4166* |
The Axiom of Separation of IZF set theory. Axiom 6 of [Crosilla], p.
"Axioms of CZF and IZF" (with unnecessary quantifier removed,
and with a
Ⅎ𝑦𝜑 condition replaced by a disjoint
variable condition between
𝑦 and 𝜑).
The Separation Scheme is a weak form of Frege's Axiom of Comprehension, conditioning it (with 𝑥 ∈ 𝑧) so that it asserts the existence of a collection only if it is smaller than some other collection 𝑧 that already exists. This prevents Russell's paradox ru 2998. In some texts, this scheme is called "Aussonderung" or the Subset Axiom. (Contributed by NM, 11-Sep-2006.) |
| ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | ||
| Theorem | axsep2 4167* | A less restrictive version of the Separation Scheme ax-sep 4166, where variables 𝑥 and 𝑧 can both appear free in the wff 𝜑, which can therefore be thought of as 𝜑(𝑥, 𝑧). This version was derived from the more restrictive ax-sep 4166 with no additional set theory axioms. (Contributed by NM, 10-Dec-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
| ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | ||
| Theorem | zfauscl 4168* | Separation Scheme (Aussonderung) using a class variable. To derive this from ax-sep 4166, we invoke the Axiom of Extensionality (indirectly via vtocl 2828), which is needed for the justification of class variable notation. (Contributed by NM, 5-Aug-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
| Theorem | bm1.3ii 4169* | Convert implication to equivalence using the Separation Scheme (Aussonderung) ax-sep 4166. Similar to Theorem 1.3ii of [BellMachover] p. 463. (Contributed by NM, 5-Aug-1993.) |
| ⊢ ∃𝑥∀𝑦(𝜑 → 𝑦 ∈ 𝑥) ⇒ ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ 𝜑) | ||
| Theorem | a9evsep 4170* | Derive a weakened version of ax-i9 1554, where 𝑥 and 𝑦 must be distinct, from Separation ax-sep 4166 and Extensionality ax-ext 2188. The theorem ¬ ∀𝑥¬ 𝑥 = 𝑦 also holds (ax9vsep 4171), but in intuitionistic logic ∃𝑥𝑥 = 𝑦 is stronger. (Contributed by Jim Kingdon, 25-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑥 𝑥 = 𝑦 | ||
| Theorem | ax9vsep 4171* | Derive a weakened version of ax-9 1555, where 𝑥 and 𝑦 must be distinct, from Separation ax-sep 4166 and Extensionality ax-ext 2188. In intuitionistic logic a9evsep 4170 is stronger and also holds. (Contributed by NM, 12-Nov-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | ||
| Theorem | zfnuleu 4172* | Show the uniqueness of the empty set (using the Axiom of Extensionality via bm1.1 2191 to strengthen the hypothesis in the form of axnul 4173). (Contributed by NM, 22-Dec-2007.) |
| ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 ⇒ ⊢ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | ||
| Theorem | axnul 4173* |
The Null Set Axiom of ZF set theory: there exists a set with no
elements. Axiom of Empty Set of [Enderton] p. 18. In some textbooks,
this is presented as a separate axiom; here we show it can be derived
from Separation ax-sep 4166. This version of the Null Set Axiom tells us
that at least one empty set exists, but does not tell us that it is
unique - we need the Axiom of Extensionality to do that (see
zfnuleu 4172).
This theorem should not be referenced by any proof. Instead, use ax-nul 4174 below so that the uses of the Null Set Axiom can be more easily identified. (Contributed by Jeff Hoffman, 3-Feb-2008.) (Revised by NM, 4-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | ||
| Axiom | ax-nul 4174* | The Null Set Axiom of IZF set theory. It was derived as axnul 4173 above and is therefore redundant, but we state it as a separate axiom here so that its uses can be identified more easily. Axiom 4 of [Crosilla] p. "Axioms of CZF and IZF". (Contributed by NM, 7-Aug-2003.) |
| ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | ||
| Theorem | 0ex 4175 | The Null Set Axiom of ZF set theory: the empty set exists. Corollary 5.16 of [TakeutiZaring] p. 20. For the unabbreviated version, see ax-nul 4174. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ ∅ ∈ V | ||
| Theorem | csbexga 4176 | The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 𝐵 ∈ 𝑊) → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) | ||
| Theorem | csbexa 4177 | The existence of proper substitution into a class. (Contributed by NM, 7-Aug-2007.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V | ||
| Theorem | nalset 4178* | No set contains all sets. Theorem 41 of [Suppes] p. 30. (Contributed by NM, 23-Aug-1993.) |
| ⊢ ¬ ∃𝑥∀𝑦 𝑦 ∈ 𝑥 | ||
| Theorem | vnex 4179 | The universal class does not exist as a set. (Contributed by NM, 4-Jul-2005.) |
| ⊢ ¬ ∃𝑥 𝑥 = V | ||
| Theorem | vprc 4180 | The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.) |
| ⊢ ¬ V ∈ V | ||
| Theorem | nvel 4181 | The universal class does not belong to any class. (Contributed by FL, 31-Dec-2006.) |
| ⊢ ¬ V ∈ 𝐴 | ||
| Theorem | inex1 4182 | Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∩ 𝐵) ∈ V | ||
| Theorem | inex2 4183 | Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∩ 𝐴) ∈ V | ||
| Theorem | inex1g 4184 | Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | ||
| Theorem | ssex 4185 | The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 4166 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) | ||
| Theorem | ssexi 4186 | The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ 𝐴 ∈ V | ||
| Theorem | ssexg 4187 | The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | ||
| Theorem | ssexd 4188 | A subclass of a set is a set. Deduction form of ssexg 4187. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝐶) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ V) | ||
| Theorem | difexg 4189 | Existence of a difference. (Contributed by NM, 26-May-1998.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) | ||
| Theorem | zfausab 4190* | Separation Scheme (Aussonderung) in terms of a class abstraction. (Contributed by NM, 8-Jun-1994.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V | ||
| Theorem | rabexg 4191* | Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
| Theorem | rabex 4192* | Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 19-Jul-1996.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V | ||
| Theorem | rabexd 4193* | Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 4194. (Contributed by AV, 16-Jul-2019.) |
| ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
| Theorem | rabex2 4194* | Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
| ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} & ⊢ 𝐴 ∈ V ⇒ ⊢ 𝐵 ∈ V | ||
| Theorem | rab2ex 4195* | A class abstraction based on a class abstraction based on a set is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
| ⊢ 𝐵 = {𝑦 ∈ 𝐴 ∣ 𝜓} & ⊢ 𝐴 ∈ V ⇒ ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} ∈ V | ||
| Theorem | elssabg 4196* | Membership in a class abstraction involving a subset. Unlike elabg 2920, 𝐴 does not have to be a set. (Contributed by NM, 29-Aug-2006.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐵 ∧ 𝜑)} ↔ (𝐴 ⊆ 𝐵 ∧ 𝜓))) | ||
| Theorem | inteximm 4197* | The intersection of an inhabited class exists. (Contributed by Jim Kingdon, 27-Aug-2018.) |
| ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) | ||
| Theorem | intexr 4198 | If the intersection of a class exists, the class is nonempty. (Contributed by Jim Kingdon, 27-Aug-2018.) |
| ⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) | ||
| Theorem | intnexr 4199 | If a class intersection is the universe, it is not a set. In classical logic this would be an equivalence. (Contributed by Jim Kingdon, 27-Aug-2018.) |
| ⊢ (∩ 𝐴 = V → ¬ ∩ 𝐴 ∈ V) | ||
| Theorem | intexabim 4200 | The intersection of an inhabited class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.) |
| ⊢ (∃𝑥𝜑 → ∩ {𝑥 ∣ 𝜑} ∈ V) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |