ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwex GIF version

Theorem pwex 4216
Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
pwex.1 𝐴 ∈ V
Assertion
Ref Expression
pwex 𝒫 𝐴 ∈ V

Proof of Theorem pwex
StepHypRef Expression
1 pwex.1 . 2 𝐴 ∈ V
2 pwexg 4213 . 2 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
31, 2ax-mp 5 1 𝒫 𝐴 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2167  Vcvv 2763  𝒫 cpw 3605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607
This theorem is referenced by:  p0ex  4221  pp0ex  4222  ord3ex  4223  abexssex  6182  fnpm  6715  exmidpw  6969  pw1on  7293  pw1dom2  7294  pw1nel3  7298  sucpw1ne3  7299  sucpw1nel3  7300  npex  7540  axcnex  7926  pnfxr  8079  mnfxr  8083  ixxex  9974  istopon  14249  dmtopon  14259  fncld  14334
  Copyright terms: Public domain W3C validator