ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwex GIF version

Theorem pwex 4185
Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
pwex.1 𝐴 ∈ V
Assertion
Ref Expression
pwex 𝒫 𝐴 ∈ V

Proof of Theorem pwex
StepHypRef Expression
1 pwex.1 . 2 𝐴 ∈ V
2 pwexg 4182 . 2 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
31, 2ax-mp 5 1 𝒫 𝐴 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2148  Vcvv 2739  𝒫 cpw 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137  df-ss 3144  df-pw 3579
This theorem is referenced by:  p0ex  4190  pp0ex  4191  ord3ex  4192  abexssex  6128  fnpm  6658  exmidpw  6910  pw1on  7227  pw1dom2  7228  pw1nel3  7232  sucpw1ne3  7233  sucpw1nel3  7234  npex  7474  axcnex  7860  pnfxr  8012  mnfxr  8016  ixxex  9901  istopon  13598  dmtopon  13608  fncld  13683
  Copyright terms: Public domain W3C validator