ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwex GIF version

Theorem pwex 4266
Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
pwex.1 𝐴 ∈ V
Assertion
Ref Expression
pwex 𝒫 𝐴 ∈ V

Proof of Theorem pwex
StepHypRef Expression
1 pwex.1 . 2 𝐴 ∈ V
2 pwexg 4263 . 2 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
31, 2ax-mp 5 1 𝒫 𝐴 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2200  Vcvv 2799  𝒫 cpw 3649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651
This theorem is referenced by:  p0ex  4271  pp0ex  4272  ord3ex  4273  abexssex  6260  fnpm  6793  exmidpw  7058  pw1on  7399  pw1dom2  7400  pw1nel3  7404  sucpw1ne3  7405  sucpw1nel3  7406  npex  7648  axcnex  8034  pnfxr  8187  mnfxr  8191  ixxex  10083  prdsvallem  13291  istopon  14672  dmtopon  14682  fncld  14757  pw1map  16292  pw1mapen  16293
  Copyright terms: Public domain W3C validator