| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwex | GIF version | ||
| Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| pwex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| pwex | ⊢ 𝒫 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | pwexg 4229 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 𝒫 cpw 3618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3174 df-ss 3181 df-pw 3620 |
| This theorem is referenced by: p0ex 4237 pp0ex 4238 ord3ex 4239 abexssex 6220 fnpm 6753 exmidpw 7017 pw1on 7351 pw1dom2 7352 pw1nel3 7356 sucpw1ne3 7357 sucpw1nel3 7358 npex 7599 axcnex 7985 pnfxr 8138 mnfxr 8142 ixxex 10034 prdsvallem 13154 istopon 14535 dmtopon 14545 fncld 14620 |
| Copyright terms: Public domain | W3C validator |