ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwex GIF version

Theorem pwex 4217
Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
pwex.1 𝐴 ∈ V
Assertion
Ref Expression
pwex 𝒫 𝐴 ∈ V

Proof of Theorem pwex
StepHypRef Expression
1 pwex.1 . 2 𝐴 ∈ V
2 pwexg 4214 . 2 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
31, 2ax-mp 5 1 𝒫 𝐴 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2167  Vcvv 2763  𝒫 cpw 3606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-pw 3608
This theorem is referenced by:  p0ex  4222  pp0ex  4223  ord3ex  4224  abexssex  6191  fnpm  6724  exmidpw  6978  pw1on  7309  pw1dom2  7310  pw1nel3  7314  sucpw1ne3  7315  sucpw1nel3  7316  npex  7557  axcnex  7943  pnfxr  8096  mnfxr  8100  ixxex  9991  prdsvallem  12974  istopon  14333  dmtopon  14343  fncld  14418
  Copyright terms: Public domain W3C validator