| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwex | GIF version | ||
| Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| pwex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| pwex | ⊢ 𝒫 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | pwexg 4264 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 𝒫 cpw 3649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 |
| This theorem is referenced by: p0ex 4272 pp0ex 4273 ord3ex 4274 abexssex 6276 fnpm 6811 exmidpw 7078 pw1on 7419 pw1dom2 7420 pw1nel3 7424 sucpw1ne3 7425 sucpw1nel3 7426 npex 7668 axcnex 8054 pnfxr 8207 mnfxr 8211 ixxex 10103 prdsvallem 13313 istopon 14695 dmtopon 14705 fncld 14780 pw1map 16390 pw1mapen 16391 |
| Copyright terms: Public domain | W3C validator |