![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pwex | GIF version |
Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
pwex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
pwex | ⊢ 𝒫 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | pwexg 4036 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ 𝒫 𝐴 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1445 Vcvv 2633 𝒫 cpw 3449 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-in 3019 df-ss 3026 df-pw 3451 |
This theorem is referenced by: p0ex 4044 pp0ex 4045 ord3ex 4046 abexssex 5934 fnpm 6453 exmidpw 6704 npex 7129 axcnex 7493 pnfxr 7637 mnfxr 7641 ixxex 9465 istopon 11864 dmtopon 11873 fncld 11950 pw1dom2 12595 |
Copyright terms: Public domain | W3C validator |