Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zfpow | GIF version |
Description: Axiom of Power Sets expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.) |
Ref | Expression |
---|---|
zfpow | ⊢ ∃𝑥∀𝑦(∀𝑥(𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pow 4153 | . 2 ⊢ ∃𝑥∀𝑦(∀𝑤(𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑥) | |
2 | elequ1 2140 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦)) | |
3 | elequ1 2140 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧)) | |
4 | 2, 3 | imbi12d 233 | . . . . . 6 ⊢ (𝑤 = 𝑥 → ((𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧) ↔ (𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧))) |
5 | 4 | cbvalv 1905 | . . . . 5 ⊢ (∀𝑤(𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧) ↔ ∀𝑥(𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧)) |
6 | 5 | imbi1i 237 | . . . 4 ⊢ ((∀𝑤(𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ (∀𝑥(𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
7 | 6 | albii 1458 | . . 3 ⊢ (∀𝑦(∀𝑤(𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ∀𝑦(∀𝑥(𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
8 | 7 | exbii 1593 | . 2 ⊢ (∃𝑥∀𝑦(∀𝑤(𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ∃𝑥∀𝑦(∀𝑥(𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
9 | 1, 8 | mpbi 144 | 1 ⊢ ∃𝑥∀𝑦(∀𝑥(𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-13 2138 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: el 4157 |
Copyright terms: Public domain | W3C validator |