ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfpow GIF version

Theorem zfpow 4159
Description: Axiom of Power Sets expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.)
Assertion
Ref Expression
zfpow 𝑥𝑦(∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦𝑥)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem zfpow
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ax-pow 4158 . 2 𝑥𝑦(∀𝑤(𝑤𝑦𝑤𝑧) → 𝑦𝑥)
2 elequ1 2145 . . . . . . 7 (𝑤 = 𝑥 → (𝑤𝑦𝑥𝑦))
3 elequ1 2145 . . . . . . 7 (𝑤 = 𝑥 → (𝑤𝑧𝑥𝑧))
42, 3imbi12d 233 . . . . . 6 (𝑤 = 𝑥 → ((𝑤𝑦𝑤𝑧) ↔ (𝑥𝑦𝑥𝑧)))
54cbvalv 1910 . . . . 5 (∀𝑤(𝑤𝑦𝑤𝑧) ↔ ∀𝑥(𝑥𝑦𝑥𝑧))
65imbi1i 237 . . . 4 ((∀𝑤(𝑤𝑦𝑤𝑧) → 𝑦𝑥) ↔ (∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦𝑥))
76albii 1463 . . 3 (∀𝑦(∀𝑤(𝑤𝑦𝑤𝑧) → 𝑦𝑥) ↔ ∀𝑦(∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦𝑥))
87exbii 1598 . 2 (∃𝑥𝑦(∀𝑤(𝑤𝑦𝑤𝑧) → 𝑦𝑥) ↔ ∃𝑥𝑦(∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦𝑥))
91, 8mpbi 144 1 𝑥𝑦(∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-13 2143  ax-pow 4158
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by:  el  4162
  Copyright terms: Public domain W3C validator