Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  strcollnfALT GIF version

Theorem strcollnfALT 13355
Description: Alternate proof of strcollnf 13354, not using strcollnft 13353. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
strcollnf.nf 𝑏𝜑
Assertion
Ref Expression
strcollnfALT (∀𝑥𝑎𝑦𝜑 → ∃𝑏(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑))
Distinct variable group:   𝑎,𝑏,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem strcollnfALT
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 strcoll2 13352 . 2 (∀𝑥𝑎𝑦𝜑 → ∃𝑧(∀𝑥𝑎𝑦𝑧 𝜑 ∧ ∀𝑦𝑧𝑥𝑎 𝜑))
2 nfcv 2282 . . . . 5 𝑏𝑎
3 nfcv 2282 . . . . . 6 𝑏𝑧
4 strcollnf.nf . . . . . 6 𝑏𝜑
53, 4nfrexxy 2475 . . . . 5 𝑏𝑦𝑧 𝜑
62, 5nfralxy 2474 . . . 4 𝑏𝑥𝑎𝑦𝑧 𝜑
72, 4nfrexxy 2475 . . . . 5 𝑏𝑥𝑎 𝜑
83, 7nfralxy 2474 . . . 4 𝑏𝑦𝑧𝑥𝑎 𝜑
96, 8nfan 1545 . . 3 𝑏(∀𝑥𝑎𝑦𝑧 𝜑 ∧ ∀𝑦𝑧𝑥𝑎 𝜑)
10 nfv 1509 . . . 4 𝑧𝑥𝑎𝑦𝑏 𝜑
11 nfv 1509 . . . 4 𝑧𝑦𝑏𝑥𝑎 𝜑
1210, 11nfan 1545 . . 3 𝑧(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑)
13 rexeq 2630 . . . . 5 (𝑧 = 𝑏 → (∃𝑦𝑧 𝜑 ↔ ∃𝑦𝑏 𝜑))
1413ralbidv 2438 . . . 4 (𝑧 = 𝑏 → (∀𝑥𝑎𝑦𝑧 𝜑 ↔ ∀𝑥𝑎𝑦𝑏 𝜑))
15 raleq 2629 . . . 4 (𝑧 = 𝑏 → (∀𝑦𝑧𝑥𝑎 𝜑 ↔ ∀𝑦𝑏𝑥𝑎 𝜑))
1614, 15anbi12d 465 . . 3 (𝑧 = 𝑏 → ((∀𝑥𝑎𝑦𝑧 𝜑 ∧ ∀𝑦𝑧𝑥𝑎 𝜑) ↔ (∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑)))
179, 12, 16cbvex 1730 . 2 (∃𝑧(∀𝑥𝑎𝑦𝑧 𝜑 ∧ ∀𝑦𝑧𝑥𝑎 𝜑) ↔ ∃𝑏(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑))
181, 17sylib 121 1 (∀𝑥𝑎𝑦𝜑 → ∃𝑏(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wnf 1437  wex 1469  wral 2417  wrex 2418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-strcoll 13351
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator