| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > strcollnfALT | GIF version | ||
| Description: Alternate proof of strcollnf 16055, not using strcollnft 16054. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| strcollnf.nf | ⊢ Ⅎ𝑏𝜑 |
| Ref | Expression |
|---|---|
| strcollnfALT | ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strcoll2 16053 | . 2 ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 ∧ ∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑)) | |
| 2 | nfcv 2349 | . . . . 5 ⊢ Ⅎ𝑏𝑎 | |
| 3 | nfcv 2349 | . . . . . 6 ⊢ Ⅎ𝑏𝑧 | |
| 4 | strcollnf.nf | . . . . . 6 ⊢ Ⅎ𝑏𝜑 | |
| 5 | 3, 4 | nfrexw 2546 | . . . . 5 ⊢ Ⅎ𝑏∃𝑦 ∈ 𝑧 𝜑 |
| 6 | 2, 5 | nfralxy 2545 | . . . 4 ⊢ Ⅎ𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 |
| 7 | 2, 4 | nfrexw 2546 | . . . . 5 ⊢ Ⅎ𝑏∃𝑥 ∈ 𝑎 𝜑 |
| 8 | 3, 7 | nfralxy 2545 | . . . 4 ⊢ Ⅎ𝑏∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑 |
| 9 | 6, 8 | nfan 1589 | . . 3 ⊢ Ⅎ𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 ∧ ∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑) |
| 10 | nfv 1552 | . . . 4 ⊢ Ⅎ𝑧∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 | |
| 11 | nfv 1552 | . . . 4 ⊢ Ⅎ𝑧∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑 | |
| 12 | 10, 11 | nfan 1589 | . . 3 ⊢ Ⅎ𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑) |
| 13 | rexeq 2704 | . . . . 5 ⊢ (𝑧 = 𝑏 → (∃𝑦 ∈ 𝑧 𝜑 ↔ ∃𝑦 ∈ 𝑏 𝜑)) | |
| 14 | 13 | ralbidv 2507 | . . . 4 ⊢ (𝑧 = 𝑏 → (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 ↔ ∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑)) |
| 15 | raleq 2703 | . . . 4 ⊢ (𝑧 = 𝑏 → (∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑 ↔ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) | |
| 16 | 14, 15 | anbi12d 473 | . . 3 ⊢ (𝑧 = 𝑏 → ((∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 ∧ ∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑) ↔ (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑))) |
| 17 | 9, 12, 16 | cbvex 1780 | . 2 ⊢ (∃𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 ∧ ∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑) ↔ ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) |
| 18 | 1, 17 | sylib 122 | 1 ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 Ⅎwnf 1484 ∃wex 1516 ∀wral 2485 ∃wrex 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-strcoll 16052 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |