Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > strcollnfALT | GIF version |
Description: Alternate proof of strcollnf 13867, not using strcollnft 13866. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
strcollnf.nf | ⊢ Ⅎ𝑏𝜑 |
Ref | Expression |
---|---|
strcollnfALT | ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strcoll2 13865 | . 2 ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 ∧ ∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑)) | |
2 | nfcv 2308 | . . . . 5 ⊢ Ⅎ𝑏𝑎 | |
3 | nfcv 2308 | . . . . . 6 ⊢ Ⅎ𝑏𝑧 | |
4 | strcollnf.nf | . . . . . 6 ⊢ Ⅎ𝑏𝜑 | |
5 | 3, 4 | nfrexxy 2505 | . . . . 5 ⊢ Ⅎ𝑏∃𝑦 ∈ 𝑧 𝜑 |
6 | 2, 5 | nfralxy 2504 | . . . 4 ⊢ Ⅎ𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 |
7 | 2, 4 | nfrexxy 2505 | . . . . 5 ⊢ Ⅎ𝑏∃𝑥 ∈ 𝑎 𝜑 |
8 | 3, 7 | nfralxy 2504 | . . . 4 ⊢ Ⅎ𝑏∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑 |
9 | 6, 8 | nfan 1553 | . . 3 ⊢ Ⅎ𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 ∧ ∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑) |
10 | nfv 1516 | . . . 4 ⊢ Ⅎ𝑧∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 | |
11 | nfv 1516 | . . . 4 ⊢ Ⅎ𝑧∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑 | |
12 | 10, 11 | nfan 1553 | . . 3 ⊢ Ⅎ𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑) |
13 | rexeq 2662 | . . . . 5 ⊢ (𝑧 = 𝑏 → (∃𝑦 ∈ 𝑧 𝜑 ↔ ∃𝑦 ∈ 𝑏 𝜑)) | |
14 | 13 | ralbidv 2466 | . . . 4 ⊢ (𝑧 = 𝑏 → (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 ↔ ∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑)) |
15 | raleq 2661 | . . . 4 ⊢ (𝑧 = 𝑏 → (∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑 ↔ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) | |
16 | 14, 15 | anbi12d 465 | . . 3 ⊢ (𝑧 = 𝑏 → ((∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 ∧ ∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑) ↔ (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑))) |
17 | 9, 12, 16 | cbvex 1744 | . 2 ⊢ (∃𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 ∧ ∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑) ↔ ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) |
18 | 1, 17 | sylib 121 | 1 ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 Ⅎwnf 1448 ∃wex 1480 ∀wral 2444 ∃wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-strcoll 13864 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |