![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > strcollnfALT | GIF version |
Description: Alternate proof of strcollnf 15008, not using strcollnft 15007. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
strcollnf.nf | ⊢ Ⅎ𝑏𝜑 |
Ref | Expression |
---|---|
strcollnfALT | ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strcoll2 15006 | . 2 ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 ∧ ∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑)) | |
2 | nfcv 2329 | . . . . 5 ⊢ Ⅎ𝑏𝑎 | |
3 | nfcv 2329 | . . . . . 6 ⊢ Ⅎ𝑏𝑧 | |
4 | strcollnf.nf | . . . . . 6 ⊢ Ⅎ𝑏𝜑 | |
5 | 3, 4 | nfrexxy 2526 | . . . . 5 ⊢ Ⅎ𝑏∃𝑦 ∈ 𝑧 𝜑 |
6 | 2, 5 | nfralxy 2525 | . . . 4 ⊢ Ⅎ𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 |
7 | 2, 4 | nfrexxy 2526 | . . . . 5 ⊢ Ⅎ𝑏∃𝑥 ∈ 𝑎 𝜑 |
8 | 3, 7 | nfralxy 2525 | . . . 4 ⊢ Ⅎ𝑏∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑 |
9 | 6, 8 | nfan 1575 | . . 3 ⊢ Ⅎ𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 ∧ ∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑) |
10 | nfv 1538 | . . . 4 ⊢ Ⅎ𝑧∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 | |
11 | nfv 1538 | . . . 4 ⊢ Ⅎ𝑧∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑 | |
12 | 10, 11 | nfan 1575 | . . 3 ⊢ Ⅎ𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑) |
13 | rexeq 2684 | . . . . 5 ⊢ (𝑧 = 𝑏 → (∃𝑦 ∈ 𝑧 𝜑 ↔ ∃𝑦 ∈ 𝑏 𝜑)) | |
14 | 13 | ralbidv 2487 | . . . 4 ⊢ (𝑧 = 𝑏 → (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 ↔ ∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑)) |
15 | raleq 2683 | . . . 4 ⊢ (𝑧 = 𝑏 → (∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑 ↔ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) | |
16 | 14, 15 | anbi12d 473 | . . 3 ⊢ (𝑧 = 𝑏 → ((∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 ∧ ∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑) ↔ (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑))) |
17 | 9, 12, 16 | cbvex 1766 | . 2 ⊢ (∃𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 ∧ ∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑) ↔ ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) |
18 | 1, 17 | sylib 122 | 1 ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 Ⅎwnf 1470 ∃wex 1502 ∀wral 2465 ∃wrex 2466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 ax-strcoll 15005 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |