Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  strcollnfALT GIF version

Theorem strcollnfALT 13868
Description: Alternate proof of strcollnf 13867, not using strcollnft 13866. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
strcollnf.nf 𝑏𝜑
Assertion
Ref Expression
strcollnfALT (∀𝑥𝑎𝑦𝜑 → ∃𝑏(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑))
Distinct variable group:   𝑎,𝑏,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem strcollnfALT
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 strcoll2 13865 . 2 (∀𝑥𝑎𝑦𝜑 → ∃𝑧(∀𝑥𝑎𝑦𝑧 𝜑 ∧ ∀𝑦𝑧𝑥𝑎 𝜑))
2 nfcv 2308 . . . . 5 𝑏𝑎
3 nfcv 2308 . . . . . 6 𝑏𝑧
4 strcollnf.nf . . . . . 6 𝑏𝜑
53, 4nfrexxy 2505 . . . . 5 𝑏𝑦𝑧 𝜑
62, 5nfralxy 2504 . . . 4 𝑏𝑥𝑎𝑦𝑧 𝜑
72, 4nfrexxy 2505 . . . . 5 𝑏𝑥𝑎 𝜑
83, 7nfralxy 2504 . . . 4 𝑏𝑦𝑧𝑥𝑎 𝜑
96, 8nfan 1553 . . 3 𝑏(∀𝑥𝑎𝑦𝑧 𝜑 ∧ ∀𝑦𝑧𝑥𝑎 𝜑)
10 nfv 1516 . . . 4 𝑧𝑥𝑎𝑦𝑏 𝜑
11 nfv 1516 . . . 4 𝑧𝑦𝑏𝑥𝑎 𝜑
1210, 11nfan 1553 . . 3 𝑧(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑)
13 rexeq 2662 . . . . 5 (𝑧 = 𝑏 → (∃𝑦𝑧 𝜑 ↔ ∃𝑦𝑏 𝜑))
1413ralbidv 2466 . . . 4 (𝑧 = 𝑏 → (∀𝑥𝑎𝑦𝑧 𝜑 ↔ ∀𝑥𝑎𝑦𝑏 𝜑))
15 raleq 2661 . . . 4 (𝑧 = 𝑏 → (∀𝑦𝑧𝑥𝑎 𝜑 ↔ ∀𝑦𝑏𝑥𝑎 𝜑))
1614, 15anbi12d 465 . . 3 (𝑧 = 𝑏 → ((∀𝑥𝑎𝑦𝑧 𝜑 ∧ ∀𝑦𝑧𝑥𝑎 𝜑) ↔ (∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑)))
179, 12, 16cbvex 1744 . 2 (∃𝑧(∀𝑥𝑎𝑦𝑧 𝜑 ∧ ∀𝑦𝑧𝑥𝑎 𝜑) ↔ ∃𝑏(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑))
181, 17sylib 121 1 (∀𝑥𝑎𝑦𝜑 → ∃𝑏(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wnf 1448  wex 1480  wral 2444  wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-strcoll 13864
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator