| Step | Hyp | Ref
| Expression |
| 1 | | simpl 109 |
. . . . . 6
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → 𝑢 = 𝑎) |
| 2 | | rexeq 2694 |
. . . . . . 7
⊢ (𝑣 = 𝑏 → (∃𝑦 ∈ 𝑣 𝜑 ↔ ∃𝑦 ∈ 𝑏 𝜑)) |
| 3 | 2 | adantl 277 |
. . . . . 6
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∃𝑦 ∈ 𝑣 𝜑 ↔ ∃𝑦 ∈ 𝑏 𝜑)) |
| 4 | 1, 3 | raleqbidv 2709 |
. . . . 5
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑣 𝜑 ↔ ∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑)) |
| 5 | | eleq2 2260 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑎 → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ 𝑎)) |
| 6 | 5 | adantr 276 |
. . . . . . . . 9
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ 𝑎)) |
| 7 | 6 | imbi1d 231 |
. . . . . . . 8
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → ((𝑥 ∈ 𝑢 → ∃𝑦 ∈ 𝑑 𝜑) ↔ (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑑 𝜑))) |
| 8 | 7 | ralbidv2 2499 |
. . . . . . 7
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ↔ ∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑)) |
| 9 | 6 | anbi1d 465 |
. . . . . . . . 9
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → ((𝑥 ∈ 𝑢 ∧ 𝜑) ↔ (𝑥 ∈ 𝑎 ∧ 𝜑))) |
| 10 | 9 | rexbidv2 2500 |
. . . . . . . 8
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∃𝑥 ∈ 𝑢 𝜑 ↔ ∃𝑥 ∈ 𝑎 𝜑)) |
| 11 | 10 | ralbidv 2497 |
. . . . . . 7
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑 ↔ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)) |
| 12 | 8, 11 | anbi12d 473 |
. . . . . 6
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → ((∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑) ↔ (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑))) |
| 13 | 12 | rexbidv 2498 |
. . . . 5
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑) ↔ ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑))) |
| 14 | 4, 13 | imbi12d 234 |
. . . 4
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → ((∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑣 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑)) ↔ (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)))) |
| 15 | 14 | albidv 1838 |
. . 3
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∀𝑧(∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑣 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑)) ↔ ∀𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)))) |
| 16 | 15 | exbidv 1839 |
. 2
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∃𝑐∀𝑧(∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑣 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑)) ↔ ∃𝑐∀𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)))) |
| 17 | | ax-sscoll 15717 |
. . . 4
⊢
∀𝑢∀𝑣∃𝑐∀𝑧(∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑣 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑)) |
| 18 | 17 | spi 1550 |
. . 3
⊢
∀𝑣∃𝑐∀𝑧(∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑣 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑)) |
| 19 | 18 | spi 1550 |
. 2
⊢
∃𝑐∀𝑧(∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑣 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑)) |
| 20 | 16, 19 | ch2varv 15498 |
1
⊢
∃𝑐∀𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)) |