Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sscoll2 GIF version

Theorem sscoll2 15634
Description: Version of ax-sscoll 15633 with two disjoint variable conditions removed and without initial universal quantifiers. (Contributed by BJ, 5-Oct-2019.)
Assertion
Ref Expression
sscoll2 𝑐𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑,𝑥,𝑦,𝑧   𝜑,𝑐,𝑑
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑎,𝑏)

Proof of Theorem sscoll2
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . 6 ((𝑢 = 𝑎𝑣 = 𝑏) → 𝑢 = 𝑎)
2 rexeq 2694 . . . . . . 7 (𝑣 = 𝑏 → (∃𝑦𝑣 𝜑 ↔ ∃𝑦𝑏 𝜑))
32adantl 277 . . . . . 6 ((𝑢 = 𝑎𝑣 = 𝑏) → (∃𝑦𝑣 𝜑 ↔ ∃𝑦𝑏 𝜑))
41, 3raleqbidv 2709 . . . . 5 ((𝑢 = 𝑎𝑣 = 𝑏) → (∀𝑥𝑢𝑦𝑣 𝜑 ↔ ∀𝑥𝑎𝑦𝑏 𝜑))
5 eleq2 2260 . . . . . . . . . 10 (𝑢 = 𝑎 → (𝑥𝑢𝑥𝑎))
65adantr 276 . . . . . . . . 9 ((𝑢 = 𝑎𝑣 = 𝑏) → (𝑥𝑢𝑥𝑎))
76imbi1d 231 . . . . . . . 8 ((𝑢 = 𝑎𝑣 = 𝑏) → ((𝑥𝑢 → ∃𝑦𝑑 𝜑) ↔ (𝑥𝑎 → ∃𝑦𝑑 𝜑)))
87ralbidv2 2499 . . . . . . 7 ((𝑢 = 𝑎𝑣 = 𝑏) → (∀𝑥𝑢𝑦𝑑 𝜑 ↔ ∀𝑥𝑎𝑦𝑑 𝜑))
96anbi1d 465 . . . . . . . . 9 ((𝑢 = 𝑎𝑣 = 𝑏) → ((𝑥𝑢𝜑) ↔ (𝑥𝑎𝜑)))
109rexbidv2 2500 . . . . . . . 8 ((𝑢 = 𝑎𝑣 = 𝑏) → (∃𝑥𝑢 𝜑 ↔ ∃𝑥𝑎 𝜑))
1110ralbidv 2497 . . . . . . 7 ((𝑢 = 𝑎𝑣 = 𝑏) → (∀𝑦𝑑𝑥𝑢 𝜑 ↔ ∀𝑦𝑑𝑥𝑎 𝜑))
128, 11anbi12d 473 . . . . . 6 ((𝑢 = 𝑎𝑣 = 𝑏) → ((∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑) ↔ (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑)))
1312rexbidv 2498 . . . . 5 ((𝑢 = 𝑎𝑣 = 𝑏) → (∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑) ↔ ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑)))
144, 13imbi12d 234 . . . 4 ((𝑢 = 𝑎𝑣 = 𝑏) → ((∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑)) ↔ (∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))))
1514albidv 1838 . . 3 ((𝑢 = 𝑎𝑣 = 𝑏) → (∀𝑧(∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑)) ↔ ∀𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))))
1615exbidv 1839 . 2 ((𝑢 = 𝑎𝑣 = 𝑏) → (∃𝑐𝑧(∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑)) ↔ ∃𝑐𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))))
17 ax-sscoll 15633 . . . 4 𝑢𝑣𝑐𝑧(∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑))
1817spi 1550 . . 3 𝑣𝑐𝑧(∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑))
1918spi 1550 . 2 𝑐𝑧(∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑))
2016, 19ch2varv 15414 1 𝑐𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362  wex 1506  wral 2475  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sscoll 15633
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator