Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sscoll2 GIF version

Theorem sscoll2 16038
Description: Version of ax-sscoll 16037 with two disjoint variable conditions removed and without initial universal quantifiers. (Contributed by BJ, 5-Oct-2019.)
Assertion
Ref Expression
sscoll2 𝑐𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑,𝑥,𝑦,𝑧   𝜑,𝑐,𝑑
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑎,𝑏)

Proof of Theorem sscoll2
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . 6 ((𝑢 = 𝑎𝑣 = 𝑏) → 𝑢 = 𝑎)
2 rexeq 2704 . . . . . . 7 (𝑣 = 𝑏 → (∃𝑦𝑣 𝜑 ↔ ∃𝑦𝑏 𝜑))
32adantl 277 . . . . . 6 ((𝑢 = 𝑎𝑣 = 𝑏) → (∃𝑦𝑣 𝜑 ↔ ∃𝑦𝑏 𝜑))
41, 3raleqbidv 2719 . . . . 5 ((𝑢 = 𝑎𝑣 = 𝑏) → (∀𝑥𝑢𝑦𝑣 𝜑 ↔ ∀𝑥𝑎𝑦𝑏 𝜑))
5 eleq2 2270 . . . . . . . . . 10 (𝑢 = 𝑎 → (𝑥𝑢𝑥𝑎))
65adantr 276 . . . . . . . . 9 ((𝑢 = 𝑎𝑣 = 𝑏) → (𝑥𝑢𝑥𝑎))
76imbi1d 231 . . . . . . . 8 ((𝑢 = 𝑎𝑣 = 𝑏) → ((𝑥𝑢 → ∃𝑦𝑑 𝜑) ↔ (𝑥𝑎 → ∃𝑦𝑑 𝜑)))
87ralbidv2 2509 . . . . . . 7 ((𝑢 = 𝑎𝑣 = 𝑏) → (∀𝑥𝑢𝑦𝑑 𝜑 ↔ ∀𝑥𝑎𝑦𝑑 𝜑))
96anbi1d 465 . . . . . . . . 9 ((𝑢 = 𝑎𝑣 = 𝑏) → ((𝑥𝑢𝜑) ↔ (𝑥𝑎𝜑)))
109rexbidv2 2510 . . . . . . . 8 ((𝑢 = 𝑎𝑣 = 𝑏) → (∃𝑥𝑢 𝜑 ↔ ∃𝑥𝑎 𝜑))
1110ralbidv 2507 . . . . . . 7 ((𝑢 = 𝑎𝑣 = 𝑏) → (∀𝑦𝑑𝑥𝑢 𝜑 ↔ ∀𝑦𝑑𝑥𝑎 𝜑))
128, 11anbi12d 473 . . . . . 6 ((𝑢 = 𝑎𝑣 = 𝑏) → ((∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑) ↔ (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑)))
1312rexbidv 2508 . . . . 5 ((𝑢 = 𝑎𝑣 = 𝑏) → (∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑) ↔ ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑)))
144, 13imbi12d 234 . . . 4 ((𝑢 = 𝑎𝑣 = 𝑏) → ((∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑)) ↔ (∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))))
1514albidv 1848 . . 3 ((𝑢 = 𝑎𝑣 = 𝑏) → (∀𝑧(∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑)) ↔ ∀𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))))
1615exbidv 1849 . 2 ((𝑢 = 𝑎𝑣 = 𝑏) → (∃𝑐𝑧(∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑)) ↔ ∃𝑐𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))))
17 ax-sscoll 16037 . . . 4 𝑢𝑣𝑐𝑧(∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑))
1817spi 1560 . . 3 𝑣𝑐𝑧(∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑))
1918spi 1560 . 2 𝑐𝑧(∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑))
2016, 19ch2varv 15818 1 𝑐𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371  wex 1516  wral 2485  wrex 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-sscoll 16037
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator