Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sscoll2 GIF version

Theorem sscoll2 15036
Description: Version of ax-sscoll 15035 with two disjoint variable conditions removed and without initial universal quantifiers. (Contributed by BJ, 5-Oct-2019.)
Assertion
Ref Expression
sscoll2 𝑐𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑,𝑥,𝑦,𝑧   𝜑,𝑐,𝑑
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑎,𝑏)

Proof of Theorem sscoll2
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . 6 ((𝑢 = 𝑎𝑣 = 𝑏) → 𝑢 = 𝑎)
2 rexeq 2684 . . . . . . 7 (𝑣 = 𝑏 → (∃𝑦𝑣 𝜑 ↔ ∃𝑦𝑏 𝜑))
32adantl 277 . . . . . 6 ((𝑢 = 𝑎𝑣 = 𝑏) → (∃𝑦𝑣 𝜑 ↔ ∃𝑦𝑏 𝜑))
41, 3raleqbidv 2695 . . . . 5 ((𝑢 = 𝑎𝑣 = 𝑏) → (∀𝑥𝑢𝑦𝑣 𝜑 ↔ ∀𝑥𝑎𝑦𝑏 𝜑))
5 eleq2 2251 . . . . . . . . . 10 (𝑢 = 𝑎 → (𝑥𝑢𝑥𝑎))
65adantr 276 . . . . . . . . 9 ((𝑢 = 𝑎𝑣 = 𝑏) → (𝑥𝑢𝑥𝑎))
76imbi1d 231 . . . . . . . 8 ((𝑢 = 𝑎𝑣 = 𝑏) → ((𝑥𝑢 → ∃𝑦𝑑 𝜑) ↔ (𝑥𝑎 → ∃𝑦𝑑 𝜑)))
87ralbidv2 2489 . . . . . . 7 ((𝑢 = 𝑎𝑣 = 𝑏) → (∀𝑥𝑢𝑦𝑑 𝜑 ↔ ∀𝑥𝑎𝑦𝑑 𝜑))
96anbi1d 465 . . . . . . . . 9 ((𝑢 = 𝑎𝑣 = 𝑏) → ((𝑥𝑢𝜑) ↔ (𝑥𝑎𝜑)))
109rexbidv2 2490 . . . . . . . 8 ((𝑢 = 𝑎𝑣 = 𝑏) → (∃𝑥𝑢 𝜑 ↔ ∃𝑥𝑎 𝜑))
1110ralbidv 2487 . . . . . . 7 ((𝑢 = 𝑎𝑣 = 𝑏) → (∀𝑦𝑑𝑥𝑢 𝜑 ↔ ∀𝑦𝑑𝑥𝑎 𝜑))
128, 11anbi12d 473 . . . . . 6 ((𝑢 = 𝑎𝑣 = 𝑏) → ((∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑) ↔ (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑)))
1312rexbidv 2488 . . . . 5 ((𝑢 = 𝑎𝑣 = 𝑏) → (∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑) ↔ ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑)))
144, 13imbi12d 234 . . . 4 ((𝑢 = 𝑎𝑣 = 𝑏) → ((∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑)) ↔ (∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))))
1514albidv 1834 . . 3 ((𝑢 = 𝑎𝑣 = 𝑏) → (∀𝑧(∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑)) ↔ ∀𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))))
1615exbidv 1835 . 2 ((𝑢 = 𝑎𝑣 = 𝑏) → (∃𝑐𝑧(∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑)) ↔ ∃𝑐𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))))
17 ax-sscoll 15035 . . . 4 𝑢𝑣𝑐𝑧(∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑))
1817spi 1546 . . 3 𝑣𝑐𝑧(∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑))
1918spi 1546 . 2 𝑐𝑧(∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑))
2016, 19ch2varv 14816 1 𝑐𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1361  wex 1502  wral 2465  wrex 2466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-sscoll 15035
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator