Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sscoll2 GIF version

Theorem sscoll2 15480
Description: Version of ax-sscoll 15479 with two disjoint variable conditions removed and without initial universal quantifiers. (Contributed by BJ, 5-Oct-2019.)
Assertion
Ref Expression
sscoll2 𝑐𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑,𝑥,𝑦,𝑧   𝜑,𝑐,𝑑
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑎,𝑏)

Proof of Theorem sscoll2
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . 6 ((𝑢 = 𝑎𝑣 = 𝑏) → 𝑢 = 𝑎)
2 rexeq 2691 . . . . . . 7 (𝑣 = 𝑏 → (∃𝑦𝑣 𝜑 ↔ ∃𝑦𝑏 𝜑))
32adantl 277 . . . . . 6 ((𝑢 = 𝑎𝑣 = 𝑏) → (∃𝑦𝑣 𝜑 ↔ ∃𝑦𝑏 𝜑))
41, 3raleqbidv 2706 . . . . 5 ((𝑢 = 𝑎𝑣 = 𝑏) → (∀𝑥𝑢𝑦𝑣 𝜑 ↔ ∀𝑥𝑎𝑦𝑏 𝜑))
5 eleq2 2257 . . . . . . . . . 10 (𝑢 = 𝑎 → (𝑥𝑢𝑥𝑎))
65adantr 276 . . . . . . . . 9 ((𝑢 = 𝑎𝑣 = 𝑏) → (𝑥𝑢𝑥𝑎))
76imbi1d 231 . . . . . . . 8 ((𝑢 = 𝑎𝑣 = 𝑏) → ((𝑥𝑢 → ∃𝑦𝑑 𝜑) ↔ (𝑥𝑎 → ∃𝑦𝑑 𝜑)))
87ralbidv2 2496 . . . . . . 7 ((𝑢 = 𝑎𝑣 = 𝑏) → (∀𝑥𝑢𝑦𝑑 𝜑 ↔ ∀𝑥𝑎𝑦𝑑 𝜑))
96anbi1d 465 . . . . . . . . 9 ((𝑢 = 𝑎𝑣 = 𝑏) → ((𝑥𝑢𝜑) ↔ (𝑥𝑎𝜑)))
109rexbidv2 2497 . . . . . . . 8 ((𝑢 = 𝑎𝑣 = 𝑏) → (∃𝑥𝑢 𝜑 ↔ ∃𝑥𝑎 𝜑))
1110ralbidv 2494 . . . . . . 7 ((𝑢 = 𝑎𝑣 = 𝑏) → (∀𝑦𝑑𝑥𝑢 𝜑 ↔ ∀𝑦𝑑𝑥𝑎 𝜑))
128, 11anbi12d 473 . . . . . 6 ((𝑢 = 𝑎𝑣 = 𝑏) → ((∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑) ↔ (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑)))
1312rexbidv 2495 . . . . 5 ((𝑢 = 𝑎𝑣 = 𝑏) → (∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑) ↔ ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑)))
144, 13imbi12d 234 . . . 4 ((𝑢 = 𝑎𝑣 = 𝑏) → ((∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑)) ↔ (∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))))
1514albidv 1835 . . 3 ((𝑢 = 𝑎𝑣 = 𝑏) → (∀𝑧(∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑)) ↔ ∀𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))))
1615exbidv 1836 . 2 ((𝑢 = 𝑎𝑣 = 𝑏) → (∃𝑐𝑧(∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑)) ↔ ∃𝑐𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))))
17 ax-sscoll 15479 . . . 4 𝑢𝑣𝑐𝑧(∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑))
1817spi 1547 . . 3 𝑣𝑐𝑧(∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑))
1918spi 1547 . 2 𝑐𝑧(∀𝑥𝑢𝑦𝑣 𝜑 → ∃𝑑𝑐 (∀𝑥𝑢𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑢 𝜑))
2016, 19ch2varv 15260 1 𝑐𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362  wex 1503  wral 2472  wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sscoll 15479
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator