| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpl 109 | 
. . . . . 6
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → 𝑢 = 𝑎) | 
| 2 |   | rexeq 2694 | 
. . . . . . 7
⊢ (𝑣 = 𝑏 → (∃𝑦 ∈ 𝑣 𝜑 ↔ ∃𝑦 ∈ 𝑏 𝜑)) | 
| 3 | 2 | adantl 277 | 
. . . . . 6
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∃𝑦 ∈ 𝑣 𝜑 ↔ ∃𝑦 ∈ 𝑏 𝜑)) | 
| 4 | 1, 3 | raleqbidv 2709 | 
. . . . 5
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑣 𝜑 ↔ ∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑)) | 
| 5 |   | eleq2 2260 | 
. . . . . . . . . 10
⊢ (𝑢 = 𝑎 → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ 𝑎)) | 
| 6 | 5 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ 𝑎)) | 
| 7 | 6 | imbi1d 231 | 
. . . . . . . 8
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → ((𝑥 ∈ 𝑢 → ∃𝑦 ∈ 𝑑 𝜑) ↔ (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑑 𝜑))) | 
| 8 | 7 | ralbidv2 2499 | 
. . . . . . 7
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ↔ ∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑)) | 
| 9 | 6 | anbi1d 465 | 
. . . . . . . . 9
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → ((𝑥 ∈ 𝑢 ∧ 𝜑) ↔ (𝑥 ∈ 𝑎 ∧ 𝜑))) | 
| 10 | 9 | rexbidv2 2500 | 
. . . . . . . 8
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∃𝑥 ∈ 𝑢 𝜑 ↔ ∃𝑥 ∈ 𝑎 𝜑)) | 
| 11 | 10 | ralbidv 2497 | 
. . . . . . 7
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑 ↔ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)) | 
| 12 | 8, 11 | anbi12d 473 | 
. . . . . 6
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → ((∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑) ↔ (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑))) | 
| 13 | 12 | rexbidv 2498 | 
. . . . 5
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑) ↔ ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑))) | 
| 14 | 4, 13 | imbi12d 234 | 
. . . 4
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → ((∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑣 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑)) ↔ (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)))) | 
| 15 | 14 | albidv 1838 | 
. . 3
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∀𝑧(∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑣 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑)) ↔ ∀𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)))) | 
| 16 | 15 | exbidv 1839 | 
. 2
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∃𝑐∀𝑧(∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑣 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑)) ↔ ∃𝑐∀𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)))) | 
| 17 |   | ax-sscoll 15633 | 
. . . 4
⊢
∀𝑢∀𝑣∃𝑐∀𝑧(∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑣 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑)) | 
| 18 | 17 | spi 1550 | 
. . 3
⊢
∀𝑣∃𝑐∀𝑧(∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑣 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑)) | 
| 19 | 18 | spi 1550 | 
. 2
⊢
∃𝑐∀𝑧(∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑣 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑)) | 
| 20 | 16, 19 | ch2varv 15414 | 
1
⊢
∃𝑐∀𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)) |