Step | Hyp | Ref
| Expression |
1 | | simpl 108 |
. . . . . 6
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → 𝑢 = 𝑎) |
2 | | rexeq 2662 |
. . . . . . 7
⊢ (𝑣 = 𝑏 → (∃𝑦 ∈ 𝑣 𝜑 ↔ ∃𝑦 ∈ 𝑏 𝜑)) |
3 | 2 | adantl 275 |
. . . . . 6
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∃𝑦 ∈ 𝑣 𝜑 ↔ ∃𝑦 ∈ 𝑏 𝜑)) |
4 | 1, 3 | raleqbidv 2673 |
. . . . 5
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑣 𝜑 ↔ ∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑)) |
5 | | eleq2 2230 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑎 → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ 𝑎)) |
6 | 5 | adantr 274 |
. . . . . . . . 9
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ 𝑎)) |
7 | 6 | imbi1d 230 |
. . . . . . . 8
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → ((𝑥 ∈ 𝑢 → ∃𝑦 ∈ 𝑑 𝜑) ↔ (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑑 𝜑))) |
8 | 7 | ralbidv2 2468 |
. . . . . . 7
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ↔ ∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑)) |
9 | 6 | anbi1d 461 |
. . . . . . . . 9
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → ((𝑥 ∈ 𝑢 ∧ 𝜑) ↔ (𝑥 ∈ 𝑎 ∧ 𝜑))) |
10 | 9 | rexbidv2 2469 |
. . . . . . . 8
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∃𝑥 ∈ 𝑢 𝜑 ↔ ∃𝑥 ∈ 𝑎 𝜑)) |
11 | 10 | ralbidv 2466 |
. . . . . . 7
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑 ↔ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)) |
12 | 8, 11 | anbi12d 465 |
. . . . . 6
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → ((∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑) ↔ (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑))) |
13 | 12 | rexbidv 2467 |
. . . . 5
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑) ↔ ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑))) |
14 | 4, 13 | imbi12d 233 |
. . . 4
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → ((∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑣 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑)) ↔ (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)))) |
15 | 14 | albidv 1812 |
. . 3
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∀𝑧(∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑣 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑)) ↔ ∀𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)))) |
16 | 15 | exbidv 1813 |
. 2
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∃𝑐∀𝑧(∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑣 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑)) ↔ ∃𝑐∀𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)))) |
17 | | ax-sscoll 13869 |
. . . 4
⊢
∀𝑢∀𝑣∃𝑐∀𝑧(∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑣 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑)) |
18 | 17 | spi 1524 |
. . 3
⊢
∀𝑣∃𝑐∀𝑧(∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑣 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑)) |
19 | 18 | spi 1524 |
. 2
⊢
∃𝑐∀𝑧(∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑣 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑢 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑢 𝜑)) |
20 | 16, 19 | ch2varv 13649 |
1
⊢
∃𝑐∀𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)) |