| Intuitionistic Logic Explorer Theorem List (p. 152 of 161) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | abscncf 15101 | Absolute value is continuous. (Contributed by Paul Chapman, 21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ abs ∈ (ℂ–cn→ℝ) | ||
| Theorem | recncf 15102 | Real part is continuous. (Contributed by Paul Chapman, 21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ ℜ ∈ (ℂ–cn→ℝ) | ||
| Theorem | imcncf 15103 | Imaginary part is continuous. (Contributed by Paul Chapman, 21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ ℑ ∈ (ℂ–cn→ℝ) | ||
| Theorem | cjcncf 15104 | Complex conjugate is continuous. (Contributed by Paul Chapman, 21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ ∗ ∈ (ℂ–cn→ℂ) | ||
| Theorem | mulc1cncf 15105* | Multiplication by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ)) | ||
| Theorem | divccncfap 15106* | Division by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Jim Kingdon, 9-Jan-2023.) |
| ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 / 𝐴)) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → 𝐹 ∈ (ℂ–cn→ℂ)) | ||
| Theorem | cncfco 15107 | The composition of two continuous maps on complex numbers is also continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) & ⊢ (𝜑 → 𝐺 ∈ (𝐵–cn→𝐶)) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ (𝐴–cn→𝐶)) | ||
| Theorem | cncfmet 15108 | Relate complex function continuity to metric space continuity. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.) |
| ⊢ 𝐶 = ((abs ∘ − ) ↾ (𝐴 × 𝐴)) & ⊢ 𝐷 = ((abs ∘ − ) ↾ (𝐵 × 𝐵)) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = (𝐽 Cn 𝐾)) | ||
| Theorem | cncfcncntop 15109 | Relate complex function continuity to topological continuity. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) & ⊢ 𝐾 = (𝐽 ↾t 𝐴) & ⊢ 𝐿 = (𝐽 ↾t 𝐵) ⇒ ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = (𝐾 Cn 𝐿)) | ||
| Theorem | cncfcn1cntop 15110 | Relate complex function continuity to topological continuity. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.) (Revised by Jim Kingdon, 16-Jun-2023.) |
| ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) ⇒ ⊢ (ℂ–cn→ℂ) = (𝐽 Cn 𝐽) | ||
| Theorem | cncfcn1 15111 | Relate complex function continuity to topological continuity. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (ℂ–cn→ℂ) = (𝐽 Cn 𝐽) | ||
| Theorem | cncfmptc 15112* | A constant function is a continuous function on ℂ. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Sep-2015.) |
| ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝐴) ∈ (𝑆–cn→𝑇)) | ||
| Theorem | cncfmptid 15113* | The identity function is a continuous function on ℂ. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 17-May-2016.) |
| ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (𝑆–cn→𝑇)) | ||
| Theorem | cncfmpt1f 15114* | Composition of continuous functions. –cn→ analogue of cnmpt11f 14800. (Contributed by Mario Carneiro, 3-Sep-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (ℂ–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴)) ∈ (𝑋–cn→ℂ)) | ||
| Theorem | cncfmpt2fcntop 15115* | Composition of continuous functions. –cn→ analogue of cnmpt12f 14802. (Contributed by Mario Carneiro, 3-Sep-2014.) |
| ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) & ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋–cn→ℂ)) | ||
| Theorem | addccncf 15116* | Adding a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 + 𝐴)) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ)) | ||
| Theorem | idcncf 15117 | The identity function is a continuous function on ℂ. (Contributed by Jeff Madsen, 11-Jun-2010.) (Moved into main set.mm as cncfmptid 15113 and may be deleted by mathbox owner, JM. --MC 12-Sep-2015.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝑥) ⇒ ⊢ 𝐹 ∈ (ℂ–cn→ℂ) | ||
| Theorem | sub1cncf 15118* | Subtracting a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 − 𝐴)) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ)) | ||
| Theorem | sub2cncf 15119* | Subtraction from a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ (𝐴 − 𝑥)) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ)) | ||
| Theorem | cdivcncfap 15120* | Division with a constant numerator is continuous. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 26-May-2023.) |
| ⊢ 𝐹 = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 / 𝑥)) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ)) | ||
| Theorem | negcncf 15121* | The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ -𝑥) ⇒ ⊢ (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴–cn→ℂ)) | ||
| Theorem | negfcncf 15122* | The negative of a continuous complex function is continuous. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ -(𝐹‘𝑥)) ⇒ ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐺 ∈ (𝐴–cn→ℂ)) | ||
| Theorem | mulcncflem 15123* | Lemma for mulcncf 15124. (Contributed by Jim Kingdon, 29-May-2023.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → 𝑉 ∈ 𝑋) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐹 ∈ ℝ+) & ⊢ (𝜑 → 𝐺 ∈ ℝ+) & ⊢ (𝜑 → 𝑆 ∈ ℝ+) & ⊢ (𝜑 → 𝑇 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑢 ∈ 𝑋 ((abs‘(𝑢 − 𝑉)) < 𝑆 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑢) − ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉))) < 𝐹)) & ⊢ (𝜑 → ∀𝑢 ∈ 𝑋 ((abs‘(𝑢 − 𝑉)) < 𝑇 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑢) − ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉))) < 𝐺)) & ⊢ (𝜑 → ∀𝑢 ∈ 𝑋 (((abs‘(⦋𝑢 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑢 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺) → (abs‘((⦋𝑢 / 𝑥⦌𝐴 · ⦋𝑢 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸)) ⇒ ⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ((abs‘(𝑢 − 𝑉)) < 𝑑 → (abs‘(((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸)) | ||
| Theorem | mulcncf 15124* | The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋–cn→ℂ)) | ||
| Theorem | expcncf 15125* | The power function on complex numbers, for fixed exponent N, is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) | ||
| Theorem | cnrehmeocntop 15126* | The canonical bijection from (ℝ × ℝ) to ℂ described in cnref1o 9779 is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if (ℝ × ℝ) is metrized with the l<SUP>2</SUP> norm.) (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) ⇒ ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) | ||
| Theorem | cnopnap 15127* | The complex numbers apart from a given complex number form an open set. (Contributed by Jim Kingdon, 14-Dec-2023.) |
| ⊢ (𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − ))) | ||
| Theorem | addcncf 15128* | The addition of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝑋–cn→ℂ)) | ||
| Theorem | subcncf 15129* | The subtraction of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 − 𝐵)) ∈ (𝑋–cn→ℂ)) | ||
| Theorem | divcncfap 15130* | The quotient of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0})) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋–cn→ℂ)) | ||
| Theorem | maxcncf 15131* | The maximum of two continuous real functions is continuous. (Contributed by Jim Kingdon, 18-Jul-2025.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℝ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℝ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ sup({𝐴, 𝐵}, ℝ, < )) ∈ (𝑋–cn→ℝ)) | ||
| Theorem | mincncf 15132* | The minimum of two continuous real functions is continuous. (Contributed by Jim Kingdon, 19-Jul-2025.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℝ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℝ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ inf({𝐴, 𝐵}, ℝ, < )) ∈ (𝑋–cn→ℝ)) | ||
| Theorem | dedekindeulemuub 15133* | Lemma for dedekindeu 15139. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 2-Feb-2024.) |
| ⊢ (𝜑 → 𝐿 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∀𝑧 ∈ 𝐿 𝑧 < 𝐴) | ||
| Theorem | dedekindeulemub 15134* | Lemma for dedekindeu 15139. The lower cut has an upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.) |
| ⊢ (𝜑 → 𝐿 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐿 𝑦 < 𝑥) | ||
| Theorem | dedekindeulemloc 15135* | Lemma for dedekindeu 15139. The set L is located. (Contributed by Jim Kingdon, 31-Jan-2024.) |
| ⊢ (𝜑 → 𝐿 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐿 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐿 𝑧 < 𝑦))) | ||
| Theorem | dedekindeulemlub 15136* | Lemma for dedekindeu 15139. The set L has a least upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.) |
| ⊢ (𝜑 → 𝐿 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) | ||
| Theorem | dedekindeulemlu 15137* | Lemma for dedekindeu 15139. There is a number which separates the lower and upper cuts. (Contributed by Jim Kingdon, 31-Jan-2024.) |
| ⊢ (𝜑 → 𝐿 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑞 ∈ 𝐿 𝑞 < 𝑥 ∧ ∀𝑟 ∈ 𝑈 𝑥 < 𝑟)) | ||
| Theorem | dedekindeulemeu 15138* | Lemma for dedekindeu 15139. Part of proving uniqueness. (Contributed by Jim Kingdon, 31-Jan-2024.) |
| ⊢ (𝜑 → 𝐿 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐴 ∧ ∀𝑟 ∈ 𝑈 𝐴 < 𝑟)) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐵 ∧ ∀𝑟 ∈ 𝑈 𝐵 < 𝑟)) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → ⊥) | ||
| Theorem | dedekindeu 15139* | A Dedekind cut identifies a unique real number. Similar to df-inp 7586 except that the the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 5-Jan-2024.) |
| ⊢ (𝜑 → 𝐿 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ ℝ (∀𝑞 ∈ 𝐿 𝑞 < 𝑥 ∧ ∀𝑟 ∈ 𝑈 𝑥 < 𝑟)) | ||
| Theorem | suplociccreex 15140* | An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 8152 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 < 𝐶) & ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) & ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
| Theorem | suplociccex 15141* | An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 8152 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 < 𝐶) & ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) & ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐵[,]𝐶)(∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
| Theorem | dedekindicclemuub 15142* | Lemma for dedekindicc 15149. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 15-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∀𝑧 ∈ 𝐿 𝑧 < 𝐶) | ||
| Theorem | dedekindicclemub 15143* | Lemma for dedekindicc 15149. The lower cut has an upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ 𝐿 𝑦 < 𝑥) | ||
| Theorem | dedekindicclemloc 15144* | Lemma for dedekindicc 15149. The set L is located. (Contributed by Jim Kingdon, 15-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (∃𝑧 ∈ 𝐿 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐿 𝑧 < 𝑦))) | ||
| Theorem | dedekindicclemlub 15145* | Lemma for dedekindicc 15149. The set L has a least upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) | ||
| Theorem | dedekindicclemlu 15146* | Lemma for dedekindicc 15149. There is a number which separates the lower and upper cuts. (Contributed by Jim Kingdon, 15-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑞 ∈ 𝐿 𝑞 < 𝑥 ∧ ∀𝑟 ∈ 𝑈 𝑥 < 𝑟)) | ||
| Theorem | dedekindicclemeu 15147* | Lemma for dedekindicc 15149. Part of proving uniqueness. (Contributed by Jim Kingdon, 15-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐶 ∧ ∀𝑟 ∈ 𝑈 𝐶 < 𝑟)) & ⊢ (𝜑 → 𝐷 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐷 ∧ ∀𝑟 ∈ 𝑈 𝐷 < 𝑟)) & ⊢ (𝜑 → 𝐶 < 𝐷) ⇒ ⊢ (𝜑 → ⊥) | ||
| Theorem | dedekindicclemicc 15148* | Lemma for dedekindicc 15149. Same as dedekindicc 15149, except that we merely show 𝑥 to be an element of (𝐴[,]𝐵). Later we will strengthen that to (𝐴(,)𝐵). (Contributed by Jim Kingdon, 5-Jan-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ (𝐴[,]𝐵)(∀𝑞 ∈ 𝐿 𝑞 < 𝑥 ∧ ∀𝑟 ∈ 𝑈 𝑥 < 𝑟)) | ||
| Theorem | dedekindicc 15149* | A Dedekind cut identifies a unique real number. Similar to df-inp 7586 except that the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 19-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) & ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) & ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) & ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ (𝐴(,)𝐵)(∀𝑞 ∈ 𝐿 𝑞 < 𝑥 ∧ ∀𝑟 ∈ 𝑈 𝑥 < 𝑟)) | ||
| Theorem | ivthinclemlm 15150* | Lemma for ivthinc 15159. The lower cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) & ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} & ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} ⇒ ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) | ||
| Theorem | ivthinclemum 15151* | Lemma for ivthinc 15159. The upper cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) & ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} & ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} ⇒ ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑅) | ||
| Theorem | ivthinclemlopn 15152* | Lemma for ivthinc 15159. The lower cut is open. (Contributed by Jim Kingdon, 6-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) & ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} & ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} & ⊢ (𝜑 → 𝑄 ∈ 𝐿) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ 𝐿 𝑄 < 𝑟) | ||
| Theorem | ivthinclemlr 15153* | Lemma for ivthinc 15159. The lower cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) & ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} & ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} ⇒ ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) | ||
| Theorem | ivthinclemuopn 15154* | Lemma for ivthinc 15159. The upper cut is open. (Contributed by Jim Kingdon, 19-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) & ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} & ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} & ⊢ (𝜑 → 𝑆 ∈ 𝑅) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ 𝑅 𝑞 < 𝑆) | ||
| Theorem | ivthinclemur 15155* | Lemma for ivthinc 15159. The upper cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) & ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} & ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} ⇒ ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑅 ↔ ∃𝑞 ∈ 𝑅 𝑞 < 𝑟)) | ||
| Theorem | ivthinclemdisj 15156* | Lemma for ivthinc 15159. The lower and upper cuts are disjoint. (Contributed by Jim Kingdon, 18-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) & ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} & ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} ⇒ ⊢ (𝜑 → (𝐿 ∩ 𝑅) = ∅) | ||
| Theorem | ivthinclemloc 15157* | Lemma for ivthinc 15159. Locatedness. (Contributed by Jim Kingdon, 18-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) & ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} & ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} ⇒ ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑅))) | ||
| Theorem | ivthinclemex 15158* | Lemma for ivthinc 15159. Existence of a number between the lower cut and the upper cut. (Contributed by Jim Kingdon, 20-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) & ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} & ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} ⇒ ⊢ (𝜑 → ∃!𝑧 ∈ (𝐴(,)𝐵)(∀𝑞 ∈ 𝐿 𝑞 < 𝑧 ∧ ∀𝑟 ∈ 𝑅 𝑧 < 𝑟)) | ||
| Theorem | ivthinc 15159* | The intermediate value theorem, increasing case, for a strictly monotonic function. Theorem 5.5 of [Bauer], p. 494. This is Metamath 100 proof #79. (Contributed by Jim Kingdon, 5-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) | ||
| Theorem | ivthdec 15160* | The intermediate value theorem, decreasing case, for a strictly monotonic function. (Contributed by Jim Kingdon, 20-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑦) < (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) | ||
| Theorem | ivthreinc 15161* | Restating the intermediate value theorem. Given a hypothesis stating the intermediate value theorem (in a strong form which is not provable given our axioms alone), provide a conclusion similar to the theorem as stated in the Metamath Proof Explorer (which is also similar to how we state the theorem for a strictly monotonic function at ivthinc 15159). Being able to have a hypothesis stating the intermediate value theorem will be helpful when it comes time to show that it implies a constructive taboo. This version of the theorem requires that the function 𝐹 is continuous on the entire real line, not just (𝐴[,]𝐵) which may be an unnecessary condition but which is sufficient for the way we want to use it. (Contributed by Jim Kingdon, 7-Jul-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (ℝ–cn→ℝ)) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (𝜑 → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)))) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) | ||
| Theorem | hovercncf 15162 | The hover function is continuous. By hover function, we mean a a function which starts out as a line of slope one, is constant at zero from zero to one, and then resumes as a slope of one. (Contributed by Jim Kingdon, 20-Jul-2025.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) ⇒ ⊢ 𝐹 ∈ (ℝ–cn→ℝ) | ||
| Theorem | hovera 15163* | A point at which the hover function is less than a given value. (Contributed by Jim Kingdon, 21-Jul-2025.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) ⇒ ⊢ (𝑍 ∈ ℝ → (𝐹‘(𝑍 − 1)) < 𝑍) | ||
| Theorem | hoverb 15164* | A point at which the hover function is greater than a given value. (Contributed by Jim Kingdon, 21-Jul-2025.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) ⇒ ⊢ (𝑍 ∈ ℝ → 𝑍 < (𝐹‘(𝑍 + 2))) | ||
| Theorem | hoverlt1 15165* | The hover function evaluated at a point less than one. (Contributed by Jim Kingdon, 22-Jul-2025.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) ⇒ ⊢ ((𝐶 ∈ ℝ ∧ 𝐶 < 1) → (𝐹‘𝐶) ≤ 0) | ||
| Theorem | hovergt0 15166* | The hover function evaluated at a point greater than zero. (Contributed by Jim Kingdon, 22-Jul-2025.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) ⇒ ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 0 ≤ (𝐹‘𝐶)) | ||
| Theorem | ivthdichlem 15167* | Lemma for ivthdich 15169. The result, with a few notational conveniences. (Contributed by Jim Kingdon, 22-Jul-2025.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) & ⊢ (𝜑 → 𝑍 ∈ ℝ) & ⊢ (𝜑 → ∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0)))) ⇒ ⊢ (𝜑 → (𝑍 ≤ 0 ∨ 0 ≤ 𝑍)) | ||
| Theorem | dich0 15168* | Real number dichotomy stated in terms of two real numbers or a real number and zero. (Contributed by Jim Kingdon, 22-Jul-2025.) |
| ⊢ (∀𝑧 ∈ ℝ (𝑧 ≤ 0 ∨ 0 ≤ 𝑧) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) | ||
| Theorem | ivthdich 15169* |
The intermediate value theorem implies real number dichotomy. Because
real number dichotomy (also known as analytic LLPO) is a constructive
taboo, this means we will be unable to prove the intermediate value
theorem as stated here (although versions with additional conditions,
such as ivthinc 15159 for strictly monotonic functions, can be
proved).
The proof is via a function which we call the hover function and which is also described in Section 5.1 of [Bauer], p. 493. Consider any real number 𝑧. We want to show that 𝑧 ≤ 0 ∨ 0 ≤ 𝑧. Because of hovercncf 15162, hovera 15163, and hoverb 15164, we are able to apply the intermediate value theorem to get a value 𝑐 such that the hover function at 𝑐 equals 𝑧. By axltwlin 8147, 𝑐 < 1 or 0 < 𝑐, and that leads to 𝑧 ≤ 0 by hoverlt1 15165 or 0 ≤ 𝑧 by hovergt0 15166. (Contributed by Jim Kingdon and Mario Carneiro, 22-Jul-2025.) |
| ⊢ (∀𝑓(𝑓 ∈ (ℝ–cn→ℝ) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((𝑎 < 𝑏 ∧ (𝑓‘𝑎) < 0 ∧ 0 < (𝑓‘𝑏)) → ∃𝑥 ∈ ℝ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ (𝑓‘𝑥) = 0))) → ∀𝑟 ∈ ℝ ∀𝑠 ∈ ℝ (𝑟 ≤ 𝑠 ∨ 𝑠 ≤ 𝑟)) | ||
| Syntax | climc 15170 | The limit operator. |
| class limℂ | ||
| Syntax | cdv 15171 | The derivative operator. |
| class D | ||
| Definition | df-limced 15172* | Define the set of limits of a complex function at a point. Under normal circumstances, this will be a singleton or empty, depending on whether the limit exists. (Contributed by Mario Carneiro, 24-Dec-2016.) (Revised by Jim Kingdon, 3-Jun-2023.) |
| ⊢ limℂ = (𝑓 ∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∈ ℂ ∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒)))}) | ||
| Definition | df-dvap 15173* | Define the derivative operator. This acts on functions to produce a function that is defined where the original function is differentiable, with value the derivative of the function at these points. The set 𝑠 here is the ambient topological space under which we are evaluating the continuity of the difference quotient. Although the definition is valid for any subset of ℂ and is well-behaved when 𝑠 contains no isolated points, we will restrict our attention to the cases 𝑠 = ℝ or 𝑠 = ℂ for the majority of the development, these corresponding respectively to real and complex differentiation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.) |
| ⊢ D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ ∪ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) | ||
| Theorem | limcrcl 15174 | Reverse closure for the limit operator. (Contributed by Mario Carneiro, 28-Dec-2016.) |
| ⊢ (𝐶 ∈ (𝐹 limℂ 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) | ||
| Theorem | limccl 15175 | Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| ⊢ (𝐹 limℂ 𝐵) ⊆ ℂ | ||
| Theorem | ellimc3apf 15176* | Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 4-Nov-2023.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ Ⅎ𝑧𝐹 ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑦) → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)))) | ||
| Theorem | ellimc3ap 15177* | Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.) Use apartness. (Revised by Jim Kingdon, 3-Jun-2023.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑦) → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)))) | ||
| Theorem | limcdifap 15178* | It suffices to consider functions which are not defined at 𝐵 to define the limit of a function. In particular, the value of the original function 𝐹 at 𝐵 does not affect the limit of 𝐹. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 3-Jun-2023.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ((𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵}) limℂ 𝐵)) | ||
| Theorem | limcmpted 15179* | Express the limit operator for a function defined by a mapping, via epsilon-delta. (Contributed by Jim Kingdon, 3-Nov-2023.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ 𝐴 ↦ 𝐷) limℂ 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑦) → (abs‘(𝐷 − 𝐶)) < 𝑥)))) | ||
| Theorem | limcimolemlt 15180* | Lemma for limcimo 15181. (Contributed by Jim Kingdon, 3-Jul-2023.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ (𝐾 ↾t 𝑆)) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → {𝑞 ∈ 𝐶 ∣ 𝑞 # 𝐵} ⊆ 𝐴) & ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → 𝑌 ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝐷) → (abs‘((𝐹‘𝑧) − 𝑋)) < ((abs‘(𝑋 − 𝑌)) / 2))) & ⊢ (𝜑 → 𝐺 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑤 ∈ 𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤 − 𝐵)) < 𝐺) → (abs‘((𝐹‘𝑤) − 𝑌)) < ((abs‘(𝑋 − 𝑌)) / 2))) ⇒ ⊢ (𝜑 → (abs‘(𝑋 − 𝑌)) < (abs‘(𝑋 − 𝑌))) | ||
| Theorem | limcimo 15181* | Conditions which ensure there is at most one limit value of 𝐹 at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 8-Jul-2023.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ (𝐾 ↾t 𝑆)) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → {𝑞 ∈ 𝐶 ∣ 𝑞 # 𝐵} ⊆ 𝐴) & ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) ⇒ ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 limℂ 𝐵)) | ||
| Theorem | limcresi 15182 | Any limit of 𝐹 is also a limit of the restriction of 𝐹. (Contributed by Mario Carneiro, 28-Dec-2016.) |
| ⊢ (𝐹 limℂ 𝐵) ⊆ ((𝐹 ↾ 𝐶) limℂ 𝐵) | ||
| Theorem | cnplimcim 15183 | If a function is continuous at 𝐵, its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Jun-2023.) |
| ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) & ⊢ 𝐽 = (𝐾 ↾t 𝐴) ⇒ ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) | ||
| Theorem | cnplimclemle 15184 | Lemma for cnplimccntop 15186. Satisfying the epsilon condition for continuity. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.) |
| ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) & ⊢ 𝐽 = (𝐾 ↾t 𝐴) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝑍 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑍 # 𝐵 ∧ (abs‘(𝑍 − 𝐵)) < 𝐷) → (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) < (𝐸 / 2)) & ⊢ (𝜑 → (abs‘(𝑍 − 𝐵)) < 𝐷) ⇒ ⊢ (𝜑 → (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) < 𝐸) | ||
| Theorem | cnplimclemr 15185 | Lemma for cnplimccntop 15186. The reverse direction. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.) |
| ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) & ⊢ 𝐽 = (𝐾 ↾t 𝐴) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) | ||
| Theorem | cnplimccntop 15186 | A function is continuous at 𝐵 iff its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.) |
| ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) & ⊢ 𝐽 = (𝐾 ↾t 𝐴) ⇒ ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) | ||
| Theorem | cnlimcim 15187* | If 𝐹 is a continuous function, the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 16-Jun-2023.) |
| ⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴–cn→ℂ) → (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)))) | ||
| Theorem | cnlimc 15188* | 𝐹 is a continuous function iff the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.) |
| ⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴–cn→ℂ) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)))) | ||
| Theorem | cnlimci 15189 | If 𝐹 is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐷)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) | ||
| Theorem | cnmptlimc 15190* | If 𝐹 is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑋) ∈ (𝐴–cn→𝐷)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝑥 = 𝐵 → 𝑋 = 𝑌) ⇒ ⊢ (𝜑 → 𝑌 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑋) limℂ 𝐵)) | ||
| Theorem | limccnpcntop 15191 | If the limit of 𝐹 at 𝐵 is 𝐶 and 𝐺 is continuous at 𝐶, then the limit of 𝐺 ∘ 𝐹 at 𝐵 is 𝐺(𝐶). (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 18-Jun-2023.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℂ) & ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) & ⊢ 𝐽 = (𝐾 ↾t 𝐷) & ⊢ (𝜑 → 𝐶 ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶)) ⇒ ⊢ (𝜑 → (𝐺‘𝐶) ∈ ((𝐺 ∘ 𝐹) limℂ 𝐵)) | ||
| Theorem | limccnp2lem 15192* | Lemma for limccnp2cntop 15193. This is most of the result, expressed in epsilon-delta form, with a large number of hypotheses so that lengthy expressions do not need to be repeated. (Contributed by Jim Kingdon, 9-Nov-2023.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → 𝑋 ⊆ ℂ) & ⊢ (𝜑 → 𝑌 ⊆ ℂ) & ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) & ⊢ 𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) & ⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝐵)) & ⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑆) limℂ 𝐵)) & ⊢ (𝜑 → 𝐻 ∈ ((𝐽 CnP 𝐾)‘〈𝐶, 𝐷〉)) & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑟 ∈ 𝑋 ∀𝑠 ∈ 𝑌 (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑟) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑟𝐻𝑠)) < 𝐸)) & ⊢ (𝜑 → 𝐹 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < 𝐹) → (abs‘(𝑅 − 𝐶)) < 𝐿)) & ⊢ (𝜑 → 𝐺 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < 𝐺) → (abs‘(𝑆 − 𝐷)) < 𝐿)) ⇒ ⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < 𝑑) → (abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷))) < 𝐸)) | ||
| Theorem | limccnp2cntop 15193* | The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Nov-2023.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → 𝑋 ⊆ ℂ) & ⊢ (𝜑 → 𝑌 ⊆ ℂ) & ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) & ⊢ 𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) & ⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝐵)) & ⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑆) limℂ 𝐵)) & ⊢ (𝜑 → 𝐻 ∈ ((𝐽 CnP 𝐾)‘〈𝐶, 𝐷〉)) ⇒ ⊢ (𝜑 → (𝐶𝐻𝐷) ∈ ((𝑥 ∈ 𝐴 ↦ (𝑅𝐻𝑆)) limℂ 𝐵)) | ||
| Theorem | limccoap 15194* | Composition of two limits. This theorem is only usable in the case where 𝑥 # 𝑋 implies R(x) # 𝐶 so it is less general than might appear at first. (Contributed by Mario Carneiro, 29-Dec-2016.) (Revised by Jim Kingdon, 18-Dec-2023.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑋}) → 𝑅 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤 # 𝐶}) & ⊢ ((𝜑 ∧ 𝑦 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤 # 𝐶}) → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑋} ↦ 𝑅) limℂ 𝑋)) & ⊢ (𝜑 → 𝐷 ∈ ((𝑦 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤 # 𝐶} ↦ 𝑆) limℂ 𝐶)) & ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) ⇒ ⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑋} ↦ 𝑇) limℂ 𝑋)) | ||
| Theorem | reldvg 15195 | The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.) |
| ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐹)) | ||
| Theorem | dvlemap 15196* | Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 27-Jun-2023.) |
| ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) & ⊢ (𝜑 → 𝐷 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (((𝐹‘𝐴) − (𝐹‘𝐵)) / (𝐴 − 𝐵)) ∈ ℂ) | ||
| Theorem | dvfvalap 15197* | Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.) |
| ⊢ 𝑇 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) ⇒ ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ((𝑆 D 𝐹) = ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ))) | ||
| Theorem | eldvap 15198* | The differentiable predicate. A function 𝐹 is differentiable at 𝐵 with derivative 𝐶 iff 𝐹 is defined in a neighborhood of 𝐵 and the difference quotient has limit 𝐶 at 𝐵. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.) |
| ⊢ 𝑇 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) & ⊢ 𝐺 = (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵} ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) & ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) ⇒ ⊢ (𝜑 → (𝐵(𝑆 D 𝐹)𝐶 ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 limℂ 𝐵)))) | ||
| Theorem | dvcl 15199 | The derivative function takes values in the complex numbers. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) ⇒ ⊢ ((𝜑 ∧ 𝐵(𝑆 D 𝐹)𝐶) → 𝐶 ∈ ℂ) | ||
| Theorem | dvbssntrcntop 15200 | The set of differentiable points is a subset of the interior of the domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ 𝐽 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) ⇒ ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘𝐽)‘𝐴)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |