Theorem List for Intuitionistic Logic Explorer - 15101-15200 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | msf 15101 |
The distance function of a metric space is a function into the real
numbers. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
| ⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝑀 ∈ MetSp → 𝐷:(𝑋 × 𝑋)⟶ℝ) |
| |
| Theorem | xmsxmet2 15102 |
The distance function, suitably truncated, is an extended metric on
𝑋. (Contributed by Mario Carneiro,
2-Oct-2015.)
|
| ⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ (𝑀 ∈ ∞MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋)) |
| |
| Theorem | msmet2 15103 |
The distance function, suitably truncated, is a metric on 𝑋.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
| ⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ (𝑀 ∈ MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋)) |
| |
| Theorem | mscl 15104 |
Closure of the distance function of a metric space. (Contributed by NM,
30-Aug-2006.) (Revised by Mario Carneiro, 2-Oct-2015.)
|
| ⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) |
| |
| Theorem | xmscl 15105 |
Closure of the distance function of an extended metric space.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
| ⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈
ℝ*) |
| |
| Theorem | xmsge0 15106 |
The distance function in an extended metric space is nonnegative.
(Contributed by Mario Carneiro, 4-Oct-2015.)
|
| ⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) |
| |
| Theorem | xmseq0 15107 |
The distance between two points in an extended metric space is zero iff
the two points are identical. (Contributed by Mario Carneiro,
2-Oct-2015.)
|
| ⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| |
| Theorem | xmssym 15108 |
The distance function in an extended metric space is symmetric.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
| ⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) |
| |
| Theorem | xmstri2 15109 |
Triangle inequality for the distance function of an extended metric.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
| ⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))) |
| |
| Theorem | mstri2 15110 |
Triangle inequality for the distance function of a metric space.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
| ⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ MetSp ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵))) |
| |
| Theorem | xmstri 15111 |
Triangle inequality for the distance function of a metric space.
Definition 14-1.1(d) of [Gleason] p.
223. (Contributed by Mario
Carneiro, 2-Oct-2015.)
|
| ⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵))) |
| |
| Theorem | mstri 15112 |
Triangle inequality for the distance function of a metric space.
Definition 14-1.1(d) of [Gleason] p.
223. (Contributed by Mario
Carneiro, 2-Oct-2015.)
|
| ⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐶𝐷𝐵))) |
| |
| Theorem | xmstri3 15113 |
Triangle inequality for the distance function of an extended metric.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
| ⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐵𝐷𝐶))) |
| |
| Theorem | mstri3 15114 |
Triangle inequality for the distance function of a metric space.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
| ⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐵𝐷𝐶))) |
| |
| Theorem | msrtri 15115 |
Reverse triangle inequality for the distance function of a metric space.
(Contributed by Mario Carneiro, 4-Oct-2015.)
|
| ⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵)) |
| |
| Theorem | xmspropd 15116 |
Property deduction for an extended metric space. (Contributed by Mario
Carneiro, 4-Oct-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) & ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
⇒ ⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈
∞MetSp)) |
| |
| Theorem | mspropd 15117 |
Property deduction for a metric space. (Contributed by Mario Carneiro,
4-Oct-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) & ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
⇒ ⊢ (𝜑 → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp)) |
| |
| Theorem | setsmsbasg 15118 |
The base set of a constructed metric space. (Contributed by Mario
Carneiro, 28-Aug-2015.)
|
| ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx),
(MetOpen‘𝐷)〉)) & ⊢ (𝜑 → 𝑀 ∈ 𝑉)
& ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) |
| |
| Theorem | setsmsdsg 15119 |
The distance function of a constructed metric space. (Contributed by
Mario Carneiro, 28-Aug-2015.)
|
| ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx),
(MetOpen‘𝐷)〉)) & ⊢ (𝜑 → 𝑀 ∈ 𝑉)
& ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) ⇒ ⊢ (𝜑 → (dist‘𝑀) = (dist‘𝐾)) |
| |
| Theorem | setsmstsetg 15120 |
The topology of a constructed metric space. (Contributed by Mario
Carneiro, 28-Aug-2015.) (Revised by Jim Kingdon, 7-May-2023.)
|
| ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx),
(MetOpen‘𝐷)〉)) & ⊢ (𝜑 → 𝑀 ∈ 𝑉)
& ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) ⇒ ⊢ (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾)) |
| |
| Theorem | mopni 15121* |
An open set of a metric space includes a ball around each of its points.
(Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) |
| |
| Theorem | mopni2 15122* |
An open set of a metric space includes a ball around each of its points.
(Contributed by NM, 2-May-2007.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴) |
| |
| Theorem | mopni3 15123* |
An open set of a metric space includes an arbitrarily small ball around
each of its points. (Contributed by NM, 20-Sep-2007.) (Revised by
Mario Carneiro, 12-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 ∈ ℝ+) →
∃𝑥 ∈
ℝ+ (𝑥
< 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴)) |
| |
| Theorem | blssopn 15124 |
The balls of a metric space are open sets. (Contributed by NM,
12-Sep-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ⊆ 𝐽) |
| |
| Theorem | unimopn 15125 |
The union of a collection of open sets of a metric space is open.
Theorem T2 of [Kreyszig] p. 19.
(Contributed by NM, 4-Sep-2006.)
(Revised by Mario Carneiro, 23-Dec-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ⊆ 𝐽) → ∪ 𝐴 ∈ 𝐽) |
| |
| Theorem | mopnin 15126 |
The intersection of two open sets of a metric space is open.
(Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro,
23-Dec-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽) |
| |
| Theorem | mopn0 15127 |
The empty set is an open set of a metric space. Part of Theorem T1 of
[Kreyszig] p. 19. (Contributed by NM,
4-Sep-2006.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∅ ∈ 𝐽) |
| |
| Theorem | rnblopn 15128 |
A ball of a metric space is an open set. (Contributed by NM,
12-Sep-2006.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷)) → 𝐵 ∈ 𝐽) |
| |
| Theorem | blopn 15129 |
A ball of a metric space is an open set. (Contributed by NM,
9-Mar-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝐽) |
| |
| Theorem | neibl 15130* |
The neighborhoods around a point 𝑃 of a metric space are those
subsets containing a ball around 𝑃. Definition of neighborhood in
[Kreyszig] p. 19. (Contributed by NM,
8-Nov-2007.) (Revised by Mario
Carneiro, 23-Dec-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))) |
| |
| Theorem | blnei 15131 |
A ball around a point is a neighborhood of the point. (Contributed by
NM, 8-Nov-2007.) (Revised by Mario Carneiro, 24-Aug-2015.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) ∈ ((nei‘𝐽)‘{𝑃})) |
| |
| Theorem | blsscls2 15132* |
A smaller closed ball is contained in a larger open ball. (Contributed
by Mario Carneiro, 10-Jan-2014.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷)
& ⊢ 𝑆 = {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⇒ ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑇 ∈ ℝ*
∧ 𝑅 < 𝑇)) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑇)) |
| |
| Theorem | metss 15133* |
Two ways of saying that metric 𝐷 generates a finer topology than
metric 𝐶. (Contributed by Mario Carneiro,
12-Nov-2013.) (Revised
by Mario Carneiro, 24-Aug-2015.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽 ⊆ 𝐾 ↔ ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
(𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) |
| |
| Theorem | metequiv 15134* |
Two ways of saying that two metrics generate the same topology. Two
metrics satisfying the right-hand side are said to be (topologically)
equivalent. (Contributed by Jeff Hankins, 21-Jun-2009.) (Revised by
Mario Carneiro, 12-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽 = 𝐾 ↔ ∀𝑥 ∈ 𝑋 (∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
(𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∀𝑎 ∈ ℝ+ ∃𝑏 ∈ ℝ+
(𝑥(ball‘𝐶)𝑏) ⊆ (𝑥(ball‘𝐷)𝑎)))) |
| |
| Theorem | metequiv2 15135* |
If there is a sequence of radii approaching zero for which the balls of
both metrics coincide, then the generated topologies are equivalent.
(Contributed by Mario Carneiro, 26-Aug-2015.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
(𝑠 ≤ 𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → 𝐽 = 𝐾)) |
| |
| Theorem | metss2lem 15136* |
Lemma for metss2 15137. (Contributed by Mario Carneiro,
14-Sep-2015.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷)
& ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) ⇒ ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑆)) |
| |
| Theorem | metss2 15137* |
If the metric 𝐷 is "strongly finer" than
𝐶
(meaning that there
is a positive real constant 𝑅 such that
𝐶(𝑥, 𝑦) ≤ 𝑅 · 𝐷(𝑥, 𝑦)), then 𝐷 generates a finer
topology. (Using this theorem twice in each direction states that if
two metrics are strongly equivalent, then they generate the same
topology.) (Contributed by Mario Carneiro, 14-Sep-2015.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷)
& ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) ⇒ ⊢ (𝜑 → 𝐽 ⊆ 𝐾) |
| |
| Theorem | comet 15138* |
The composition of an extended metric with a monotonic subadditive
function is an extended metric. (Contributed by Mario Carneiro,
21-Mar-2015.)
|
| ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝐹:(0[,]+∞)⟶ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]+∞)) → ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0))
& ⊢ ((𝜑
∧ (𝑥 ∈ (0[,]+∞) ∧
𝑦 ∈ (0[,]+∞))) →
(𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)))
& ⊢ ((𝜑
∧ (𝑥 ∈ (0[,]+∞) ∧
𝑦 ∈ (0[,]+∞))) →
(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦))) ⇒ ⊢ (𝜑
→ (𝐹 ∘ 𝐷) ∈ (∞Met‘𝑋)) |
| |
| Theorem | bdmetval 15139* |
Value of the standard bounded metric. (Contributed by Mario Carneiro,
26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.)
|
| ⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, <
)) ⇒ ⊢ (((𝐶:(𝑋 × 𝑋)⟶ℝ* ∧ 𝑅 ∈ ℝ*)
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) = inf({(𝐴𝐶𝐵), 𝑅}, ℝ*, <
)) |
| |
| Theorem | bdxmet 15140* |
The standard bounded metric is an extended metric given an extended
metric and a positive extended real cutoff. (Contributed by Mario
Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.)
|
| ⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, <
)) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝐷 ∈ (∞Met‘𝑋)) |
| |
| Theorem | bdmet 15141* |
The standard bounded metric is a proper metric given an extended metric
and a positive real cutoff. (Contributed by Mario Carneiro,
26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
|
| ⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, <
)) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋)) |
| |
| Theorem | bdbl 15142* |
The standard bounded metric corresponding to 𝐶 generates the same
balls as 𝐶 for radii less than 𝑅.
(Contributed by Mario
Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
|
| ⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, <
)) ⇒ ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → (𝑃(ball‘𝐷)𝑆) = (𝑃(ball‘𝐶)𝑆)) |
| |
| Theorem | bdmopn 15143* |
The standard bounded metric corresponding to 𝐶 generates the same
topology as 𝐶. (Contributed by Mario Carneiro,
26-Aug-2015.)
(Revised by Jim Kingdon, 19-May-2023.)
|
| ⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐶)
⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝐽 = (MetOpen‘𝐷)) |
| |
| Theorem | mopnex 15144* |
The topology generated by an extended metric can also be generated by a
true metric. Thus, "metrizable topologies" can equivalently
be defined
in terms of metrics or extended metrics. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑)) |
| |
| Theorem | metrest 15145 |
Two alternate formulations of a subspace topology of a metric space
topology. (Contributed by Jeff Hankins, 19-Aug-2009.) (Proof shortened
by Mario Carneiro, 5-Jan-2014.)
|
| ⊢ 𝐷 = (𝐶 ↾ (𝑌 × 𝑌)) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷)
⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) = 𝐾) |
| |
| Theorem | xmetxp 15146* |
The maximum metric (Chebyshev distance) on the product of two sets.
(Contributed by Jim Kingdon, 11-Oct-2023.)
|
| ⊢ 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st
‘𝑢)𝑀(1st ‘𝑣)), ((2nd ‘𝑢)𝑁(2nd ‘𝑣))}, ℝ*, <
))
& ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) ⇒ ⊢ (𝜑 → 𝑃 ∈ (∞Met‘(𝑋 × 𝑌))) |
| |
| Theorem | xmetxpbl 15147* |
The maximum metric (Chebyshev distance) on the product of two sets,
expressed in terms of balls centered on a point 𝐶 with radius
𝑅. (Contributed by Jim Kingdon,
22-Oct-2023.)
|
| ⊢ 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st
‘𝑢)𝑀(1st ‘𝑣)), ((2nd ‘𝑢)𝑁(2nd ‘𝑣))}, ℝ*, <
))
& ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ (𝑋 × 𝑌)) ⇒ ⊢ (𝜑 → (𝐶(ball‘𝑃)𝑅) = (((1st ‘𝐶)(ball‘𝑀)𝑅) × ((2nd ‘𝐶)(ball‘𝑁)𝑅))) |
| |
| Theorem | xmettxlem 15148* |
Lemma for xmettx 15149. (Contributed by Jim Kingdon, 15-Oct-2023.)
|
| ⊢ 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st
‘𝑢)𝑀(1st ‘𝑣)), ((2nd ‘𝑢)𝑁(2nd ‘𝑣))}, ℝ*, <
))
& ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) & ⊢ 𝐽 = (MetOpen‘𝑀) & ⊢ 𝐾 = (MetOpen‘𝑁) & ⊢ 𝐿 = (MetOpen‘𝑃)
⇒ ⊢ (𝜑 → 𝐿 ⊆ (𝐽 ×t 𝐾)) |
| |
| Theorem | xmettx 15149* |
The maximum metric (Chebyshev distance) on the product of two sets,
expressed as a binary topological product. (Contributed by Jim
Kingdon, 11-Oct-2023.)
|
| ⊢ 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st
‘𝑢)𝑀(1st ‘𝑣)), ((2nd ‘𝑢)𝑁(2nd ‘𝑣))}, ℝ*, <
))
& ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) & ⊢ 𝐽 = (MetOpen‘𝑀) & ⊢ 𝐾 = (MetOpen‘𝑁) & ⊢ 𝐿 = (MetOpen‘𝑃)
⇒ ⊢ (𝜑 → 𝐿 = (𝐽 ×t 𝐾)) |
| |
| 9.2.5 Continuity in metric spaces
|
| |
| Theorem | metcnp3 15150* |
Two ways to express that 𝐹 is continuous at 𝑃 for
metric spaces.
Proposition 14-4.2 of [Gleason] p. 240.
(Contributed by NM,
17-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)))) |
| |
| Theorem | metcnp 15151* |
Two ways to say a mapping from metric 𝐶 to metric 𝐷 is
continuous at point 𝑃. (Contributed by NM, 11-May-2007.)
(Revised
by Mario Carneiro, 28-Aug-2015.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹‘𝑃)𝐷(𝐹‘𝑤)) < 𝑦)))) |
| |
| Theorem | metcnp2 15152* |
Two ways to say a mapping from metric 𝐶 to metric 𝐷 is
continuous at point 𝑃. The distance arguments are swapped
compared
to metcnp 15151 (and Munkres' metcn 15153) for compatibility with df-lm 14829.
Definition 1.3-3 of [Kreyszig] p. 20.
(Contributed by NM, 4-Jun-2007.)
(Revised by Mario Carneiro, 13-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝑋 ((𝑤𝐶𝑃) < 𝑧 → ((𝐹‘𝑤)𝐷(𝐹‘𝑃)) < 𝑦)))) |
| |
| Theorem | metcn 15153* |
Two ways to say a mapping from metric 𝐶 to metric 𝐷 is
continuous. Theorem 10.1 of [Munkres]
p. 127. The second biconditional
argument says that for every positive "epsilon" 𝑦 there
is a
positive "delta" 𝑧 such that a distance less than delta
in 𝐶
maps to a distance less than epsilon in 𝐷. (Contributed by NM,
15-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹‘𝑥)𝐷(𝐹‘𝑤)) < 𝑦)))) |
| |
| Theorem | metcnpi 15154* |
Epsilon-delta property of a continuous metric space function, with
function arguments as in metcnp 15151. (Contributed by NM, 17-Dec-2007.)
(Revised by Mario Carneiro, 13-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) →
∃𝑥 ∈
ℝ+ ∀𝑦 ∈ 𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹‘𝑃)𝐷(𝐹‘𝑦)) < 𝐴)) |
| |
| Theorem | metcnpi2 15155* |
Epsilon-delta property of a continuous metric space function, with
swapped distance function arguments as in metcnp2 15152. (Contributed by
NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) →
∃𝑥 ∈
ℝ+ ∀𝑦 ∈ 𝑋 ((𝑦𝐶𝑃) < 𝑥 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) < 𝐴)) |
| |
| Theorem | metcnpi3 15156* |
Epsilon-delta property of a metric space function continuous at 𝑃.
A variation of metcnpi2 15155 with non-strict ordering. (Contributed by
NM,
16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) →
∃𝑥 ∈
ℝ+ ∀𝑦 ∈ 𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴)) |
| |
| Theorem | txmetcnp 15157* |
Continuity of a binary operation on metric spaces. (Contributed by
Mario Carneiro, 2-Sep-2015.) (Revised by Jim Kingdon, 22-Oct-2023.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷)
& ⊢ 𝐿 = (MetOpen‘𝐸) ⇒ ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘〈𝐴, 𝐵〉) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))) |
| |
| Theorem | txmetcn 15158* |
Continuity of a binary operation on metric spaces. (Contributed by
Mario Carneiro, 2-Sep-2015.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷)
& ⊢ 𝐿 = (MetOpen‘𝐸) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧)))) |
| |
| Theorem | metcnpd 15159* |
Two ways to say a mapping from metric 𝐶 to metric 𝐷 is
continuous at point 𝑃. (Contributed by Jim Kingdon,
14-Jun-2023.)
|
| ⊢ (𝜑 → 𝐽 = (MetOpen‘𝐶)) & ⊢ (𝜑 → 𝐾 = (MetOpen‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑌)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹‘𝑃)𝐷(𝐹‘𝑤)) < 𝑦)))) |
| |
| 9.2.6 Topology on the reals
|
| |
| Theorem | qtopbasss 15160* |
The set of open intervals with endpoints in a subset forms a basis for a
topology. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by
Jim Kingdon, 22-May-2023.)
|
| ⊢ 𝑆 ⊆ ℝ* & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆) & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆)
⇒ ⊢ ((,) “ (𝑆 × 𝑆)) ∈ TopBases |
| |
| Theorem | qtopbas 15161 |
The set of open intervals with rational endpoints forms a basis for a
topology. (Contributed by NM, 8-Mar-2007.)
|
| ⊢ ((,) “ (ℚ × ℚ))
∈ TopBases |
| |
| Theorem | retopbas 15162 |
A basis for the standard topology on the reals. (Contributed by NM,
6-Feb-2007.) (Proof shortened by Mario Carneiro, 17-Jun-2014.)
|
| ⊢ ran (,) ∈ TopBases |
| |
| Theorem | retop 15163 |
The standard topology on the reals. (Contributed by FL, 4-Jun-2007.)
|
| ⊢ (topGen‘ran (,)) ∈
Top |
| |
| Theorem | uniretop 15164 |
The underlying set of the standard topology on the reals is the reals.
(Contributed by FL, 4-Jun-2007.)
|
| ⊢ ℝ = ∪
(topGen‘ran (,)) |
| |
| Theorem | retopon 15165 |
The standard topology on the reals is a topology on the reals.
(Contributed by Mario Carneiro, 28-Aug-2015.)
|
| ⊢ (topGen‘ran (,)) ∈
(TopOn‘ℝ) |
| |
| Theorem | retps 15166 |
The standard topological space on the reals. (Contributed by NM,
19-Oct-2012.)
|
| ⊢ 𝐾 = {〈(Base‘ndx), ℝ〉,
〈(TopSet‘ndx), (topGen‘ran
(,))〉} ⇒ ⊢ 𝐾 ∈ TopSp |
| |
| Theorem | iooretopg 15167 |
Open intervals are open sets of the standard topology on the reals .
(Contributed by FL, 18-Jun-2007.) (Revised by Jim Kingdon,
23-May-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝐴(,)𝐵) ∈ (topGen‘ran
(,))) |
| |
| Theorem | cnmetdval 15168 |
Value of the distance function of the metric space of complex numbers.
(Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro,
27-Dec-2014.)
|
| ⊢ 𝐷 = (abs ∘ −
) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) |
| |
| Theorem | cnmet 15169 |
The absolute value metric determines a metric space on the complex
numbers. This theorem provides a link between complex numbers and
metrics spaces, making metric space theorems available for use with
complex numbers. (Contributed by FL, 9-Oct-2006.)
|
| ⊢ (abs ∘ − ) ∈
(Met‘ℂ) |
| |
| Theorem | cnxmet 15170 |
The absolute value metric is an extended metric. (Contributed by Mario
Carneiro, 28-Aug-2015.)
|
| ⊢ (abs ∘ − ) ∈
(∞Met‘ℂ) |
| |
| Theorem | cntoptopon 15171 |
The topology of the complex numbers is a topology. (Contributed by Jim
Kingdon, 6-Jun-2023.)
|
| ⊢ 𝐽 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ 𝐽 ∈
(TopOn‘ℂ) |
| |
| Theorem | cntoptop 15172 |
The topology of the complex numbers is a topology. (Contributed by Jim
Kingdon, 6-Jun-2023.)
|
| ⊢ 𝐽 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ 𝐽 ∈ Top |
| |
| Theorem | cnbl0 15173 |
Two ways to write the open ball centered at zero. (Contributed by Mario
Carneiro, 8-Sep-2015.)
|
| ⊢ 𝐷 = (abs ∘ −
) ⇒ ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,)𝑅)) = (0(ball‘𝐷)𝑅)) |
| |
| Theorem | cnblcld 15174* |
Two ways to write the closed ball centered at zero. (Contributed by
Mario Carneiro, 8-Sep-2015.)
|
| ⊢ 𝐷 = (abs ∘ −
) ⇒ ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,]𝑅)) = {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅}) |
| |
| Theorem | cnfldms 15175 |
The complex number field is a metric space. (Contributed by Mario
Carneiro, 28-Aug-2015.)
|
| ⊢ ℂfld ∈
MetSp |
| |
| Theorem | cnfldxms 15176 |
The complex number field is a topological space. (Contributed by Mario
Carneiro, 28-Aug-2015.)
|
| ⊢ ℂfld ∈
∞MetSp |
| |
| Theorem | cnfldtps 15177 |
The complex number field is a topological space. (Contributed by Mario
Carneiro, 28-Aug-2015.)
|
| ⊢ ℂfld ∈
TopSp |
| |
| Theorem | cnfldtopn 15178 |
The topology of the complex numbers. (Contributed by Mario Carneiro,
28-Aug-2015.)
|
| ⊢ 𝐽 =
(TopOpen‘ℂfld) ⇒ ⊢ 𝐽 = (MetOpen‘(abs ∘ −
)) |
| |
| Theorem | cnfldtopon 15179 |
The topology of the complex numbers is a topology. (Contributed by
Mario Carneiro, 2-Sep-2015.)
|
| ⊢ 𝐽 =
(TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈
(TopOn‘ℂ) |
| |
| Theorem | cnfldtop 15180 |
The topology of the complex numbers is a topology. (Contributed by
Mario Carneiro, 2-Sep-2015.)
|
| ⊢ 𝐽 =
(TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ Top |
| |
| Theorem | unicntopcntop 15181 |
The underlying set of the standard topology on the complex numbers is the
set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(Revised by Jim Kingdon, 12-Dec-2023.)
|
| ⊢ ℂ = ∪
(MetOpen‘(abs ∘ − )) |
| |
| Theorem | unicntop 15182 |
The underlying set of the standard topology on the complex numbers is the
set of complex numbers. (Contributed by Glauco Siliprandi,
11-Dec-2019.)
|
| ⊢ ℂ = ∪
(TopOpen‘ℂfld) |
| |
| Theorem | cnopncntop 15183 |
The set of complex numbers is open with respect to the standard topology
on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(Revised by Jim Kingdon, 12-Dec-2023.)
|
| ⊢ ℂ ∈ (MetOpen‘(abs ∘
− )) |
| |
| Theorem | cnopn 15184 |
The set of complex numbers is open with respect to the standard topology
on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
|
| ⊢ ℂ ∈
(TopOpen‘ℂfld) |
| |
| Theorem | reopnap 15185* |
The real numbers apart from a given real number form an open set.
(Contributed by Jim Kingdon, 13-Dec-2023.)
|
| ⊢ (𝐴 ∈ ℝ → {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ∈ (topGen‘ran
(,))) |
| |
| Theorem | remetdval 15186 |
Value of the distance function of the metric space of real numbers.
(Contributed by NM, 16-May-2007.)
|
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
× ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) |
| |
| Theorem | remet 15187 |
The absolute value metric determines a metric space on the reals.
(Contributed by NM, 10-Feb-2007.)
|
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
× ℝ)) ⇒ ⊢ 𝐷 ∈
(Met‘ℝ) |
| |
| Theorem | rexmet 15188 |
The absolute value metric is an extended metric. (Contributed by Mario
Carneiro, 28-Aug-2015.)
|
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
× ℝ)) ⇒ ⊢ 𝐷 ∈
(∞Met‘ℝ) |
| |
| Theorem | bl2ioo 15189 |
A ball in terms of an open interval of reals. (Contributed by NM,
18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
|
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
× ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) |
| |
| Theorem | ioo2bl 15190 |
An open interval of reals in terms of a ball. (Contributed by NM,
18-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
|
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
× ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) = (((𝐴 + 𝐵) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2))) |
| |
| Theorem | ioo2blex 15191 |
An open interval of reals in terms of a ball. (Contributed by Mario
Carneiro, 14-Nov-2013.)
|
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
× ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) ∈ ran (ball‘𝐷)) |
| |
| Theorem | blssioo 15192 |
The balls of the standard real metric space are included in the open
real intervals. (Contributed by NM, 8-May-2007.) (Revised by Mario
Carneiro, 13-Nov-2013.)
|
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
× ℝ)) ⇒ ⊢ ran (ball‘𝐷) ⊆ ran
(,) |
| |
| Theorem | tgioo 15193 |
The topology generated by open intervals of reals is the same as the
open sets of the standard metric space on the reals. (Contributed by
NM, 7-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
|
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
× ℝ))
& ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (topGen‘ran (,)) = 𝐽 |
| |
| Theorem | tgqioo 15194 |
The topology generated by open intervals of reals with rational
endpoints is the same as the open sets of the standard metric space on
the reals. In particular, this proves that the standard topology on the
reals is second-countable. (Contributed by Mario Carneiro,
17-Jun-2014.)
|
| ⊢ 𝑄 = (topGen‘((,) “ (ℚ
× ℚ))) ⇒ ⊢ (topGen‘ran (,)) = 𝑄 |
| |
| Theorem | resubmet 15195 |
The subspace topology induced by a subset of the reals. (Contributed by
Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Aug-2014.)
|
| ⊢ 𝑅 = (topGen‘ran (,)) & ⊢ 𝐽 = (MetOpen‘((abs ∘
− ) ↾ (𝐴
× 𝐴))) ⇒ ⊢ (𝐴 ⊆ ℝ → 𝐽 = (𝑅 ↾t 𝐴)) |
| |
| Theorem | tgioo2cntop 15196 |
The standard topology on the reals is a subspace of the complex metric
topology. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by
Jim Kingdon, 6-Aug-2023.)
|
| ⊢ 𝐽 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ (topGen‘ran (,)) = (𝐽 ↾t
ℝ) |
| |
| Theorem | rerestcntop 15197 |
The subspace topology induced by a subset of the reals. (Contributed by
Mario Carneiro, 13-Aug-2014.) (Revised by Jim Kingdon, 6-Aug-2023.)
|
| ⊢ 𝐽 = (MetOpen‘(abs ∘ −
))
& ⊢ 𝑅 = (topGen‘ran
(,)) ⇒ ⊢ (𝐴 ⊆ ℝ → (𝐽 ↾t 𝐴) = (𝑅 ↾t 𝐴)) |
| |
| Theorem | tgioo2 15198 |
The standard topology on the reals is a subspace of the complex metric
topology. (Contributed by Mario Carneiro, 13-Aug-2014.)
|
| ⊢ 𝐽 =
(TopOpen‘ℂfld) ⇒ ⊢ (topGen‘ran (,)) = (𝐽 ↾t
ℝ) |
| |
| Theorem | rerest 15199 |
The subspace topology induced by a subset of the reals. (Contributed by
Mario Carneiro, 13-Aug-2014.)
|
| ⊢ 𝐽 =
(TopOpen‘ℂfld) & ⊢ 𝑅 = (topGen‘ran
(,)) ⇒ ⊢ (𝐴 ⊆ ℝ → (𝐽 ↾t 𝐴) = (𝑅 ↾t 𝐴)) |
| |
| Theorem | addcncntoplem 15200* |
Lemma for addcncntop 15201, subcncntop 15202, and mulcncntop 15203.
(Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon,
22-Oct-2023.)
|
| ⊢ 𝐽 = (MetOpen‘(abs ∘ −
))
& ⊢ + :(ℂ ×
ℂ)⟶ℂ
& ⊢ ((𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) →
∃𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ
(((abs‘(𝑢 −
𝑏)) < 𝑦 ∧ (abs‘(𝑣 − 𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎)) ⇒ ⊢ + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |