Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bd3an GIF version

Theorem bd3an 14142
Description: A conjunction of three bounded formulas is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bd3or.1 BOUNDED 𝜑
bd3or.2 BOUNDED 𝜓
bd3or.3 BOUNDED 𝜒
Assertion
Ref Expression
bd3an BOUNDED (𝜑𝜓𝜒)

Proof of Theorem bd3an
StepHypRef Expression
1 bd3or.1 . . . 4 BOUNDED 𝜑
2 bd3or.2 . . . 4 BOUNDED 𝜓
31, 2ax-bdan 14127 . . 3 BOUNDED (𝜑𝜓)
4 bd3or.3 . . 3 BOUNDED 𝜒
53, 4ax-bdan 14127 . 2 BOUNDED ((𝜑𝜓) ∧ 𝜒)
6 df-3an 980 . 2 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
75, 6bd0r 14137 1 BOUNDED (𝜑𝜓𝜒)
Colors of variables: wff set class
Syntax hints:  wa 104  w3a 978  BOUNDED wbd 14124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-bd0 14125  ax-bdan 14127
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator