Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdth GIF version

Theorem bdth 13866
Description: A truth (a (closed) theorem) is a bounded formula. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
bdth.1 𝜑
Assertion
Ref Expression
bdth BOUNDED 𝜑

Proof of Theorem bdth
StepHypRef Expression
1 ax-bdeq 13855 . . 3 BOUNDED 𝑥 = 𝑥
21, 1ax-bdim 13849 . 2 BOUNDED (𝑥 = 𝑥𝑥 = 𝑥)
3 id 19 . . 3 (𝑥 = 𝑥𝑥 = 𝑥)
4 bdth.1 . . 3 𝜑
53, 42th 173 . 2 ((𝑥 = 𝑥𝑥 = 𝑥) ↔ 𝜑)
62, 5bd0 13859 1 BOUNDED 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  BOUNDED wbd 13847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106  ax-ia3 107  ax-bd0 13848  ax-bdim 13849  ax-bdeq 13855
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  bdtru  13867  bdcvv  13892
  Copyright terms: Public domain W3C validator