Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdfal GIF version

Theorem bdfal 13715
Description: The truth value is bounded. (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bdfal BOUNDED

Proof of Theorem bdfal
StepHypRef Expression
1 bdtru 13714 . . 3 BOUNDED
21ax-bdn 13699 . 2 BOUNDED ¬ ⊤
3 df-fal 1349 . 2 (⊥ ↔ ¬ ⊤)
42, 3bd0r 13707 1 BOUNDED
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wtru 1344  wfal 1348  BOUNDED wbd 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-bd0 13695  ax-bdim 13696  ax-bdn 13699  ax-bdeq 13702
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349
This theorem is referenced by:  bdnth  13716  bj-axemptylem  13774
  Copyright terms: Public domain W3C validator