![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdnth | GIF version |
Description: A falsity is a bounded formula. (Contributed by BJ, 6-Oct-2019.) |
Ref | Expression |
---|---|
bdnth.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
bdnth | ⊢ BOUNDED 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdfal 14505 | . 2 ⊢ BOUNDED ⊥ | |
2 | fal 1360 | . . 3 ⊢ ¬ ⊥ | |
3 | bdnth.1 | . . 3 ⊢ ¬ 𝜑 | |
4 | 2, 3 | 2false 701 | . 2 ⊢ (⊥ ↔ 𝜑) |
5 | 1, 4 | bd0 14496 | 1 ⊢ BOUNDED 𝜑 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ⊥wfal 1358 BOUNDED wbd 14484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-bd0 14485 ax-bdim 14486 ax-bdn 14489 ax-bdeq 14492 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 |
This theorem is referenced by: bdcnul 14537 |
Copyright terms: Public domain | W3C validator |