| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdnth | GIF version | ||
| Description: A falsity is a bounded formula. (Contributed by BJ, 6-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdnth.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| bdnth | ⊢ BOUNDED 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdfal 16154 | . 2 ⊢ BOUNDED ⊥ | |
| 2 | fal 1402 | . . 3 ⊢ ¬ ⊥ | |
| 3 | bdnth.1 | . . 3 ⊢ ¬ 𝜑 | |
| 4 | 2, 3 | 2false 706 | . 2 ⊢ (⊥ ↔ 𝜑) |
| 5 | 1, 4 | bd0 16145 | 1 ⊢ BOUNDED 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ⊥wfal 1400 BOUNDED wbd 16133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-bd0 16134 ax-bdim 16135 ax-bdn 16138 ax-bdeq 16141 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 |
| This theorem is referenced by: bdcnul 16186 |
| Copyright terms: Public domain | W3C validator |