Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdnth GIF version

Theorem bdnth 13676
Description: A falsity is a bounded formula. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
bdnth.1 ¬ 𝜑
Assertion
Ref Expression
bdnth BOUNDED 𝜑

Proof of Theorem bdnth
StepHypRef Expression
1 bdfal 13675 . 2 BOUNDED
2 fal 1350 . . 3 ¬ ⊥
3 bdnth.1 . . 3 ¬ 𝜑
42, 32false 691 . 2 (⊥ ↔ 𝜑)
51, 4bd0 13666 1 BOUNDED 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wfal 1348  BOUNDED wbd 13654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-bd0 13655  ax-bdim 13656  ax-bdn 13659  ax-bdeq 13662
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349
This theorem is referenced by:  bdcnul  13707
  Copyright terms: Public domain W3C validator