Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdnth GIF version

Theorem bdnth 16155
Description: A falsity is a bounded formula. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
bdnth.1 ¬ 𝜑
Assertion
Ref Expression
bdnth BOUNDED 𝜑

Proof of Theorem bdnth
StepHypRef Expression
1 bdfal 16154 . 2 BOUNDED
2 fal 1402 . . 3 ¬ ⊥
3 bdnth.1 . . 3 ¬ 𝜑
42, 32false 706 . 2 (⊥ ↔ 𝜑)
51, 4bd0 16145 1 BOUNDED 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wfal 1400  BOUNDED wbd 16133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-bd0 16134  ax-bdim 16135  ax-bdn 16138  ax-bdeq 16141
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401
This theorem is referenced by:  bdcnul  16186
  Copyright terms: Public domain W3C validator