Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdfal Unicode version

Theorem bdfal 13675
Description: The truth value F. is bounded. (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bdfal  |- BOUNDED F.

Proof of Theorem bdfal
StepHypRef Expression
1 bdtru 13674 . . 3  |- BOUNDED T.
21ax-bdn 13659 . 2  |- BOUNDED  -. T.
3 df-fal 1349 . 2  |-  ( F.  <->  -. T.  )
42, 3bd0r 13667 1  |- BOUNDED F.
Colors of variables: wff set class
Syntax hints:   -. wn 3   T. wtru 1344   F. wfal 1348  BOUNDED wbd 13654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-bd0 13655  ax-bdim 13656  ax-bdn 13659  ax-bdeq 13662
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349
This theorem is referenced by:  bdnth  13676  bj-axemptylem  13734
  Copyright terms: Public domain W3C validator