Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biadani | GIF version |
Description: An implication implies to the equivalence of some implied equivalence and some other equivalence involving a conjunction. (Contributed by BJ, 4-Mar-2023.) |
Ref | Expression |
---|---|
biadani.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
biadani | ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32 450 | . 2 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ ((𝜓 ∧ 𝜑) ↔ (𝜓 ∧ 𝜒))) | |
2 | biadani.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
3 | 2 | pm4.71ri 390 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
4 | 3 | bibi1i 227 | . 2 ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) ↔ ((𝜓 ∧ 𝜑) ↔ (𝜓 ∧ 𝜒))) |
5 | 1, 4 | bitr4i 186 | 1 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biadanii 608 |
Copyright terms: Public domain | W3C validator |