| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biadani | GIF version | ||
| Description: An implication implies to the equivalence of some implied equivalence and some other equivalence involving a conjunction. (Contributed by BJ, 4-Mar-2023.) |
| Ref | Expression |
|---|---|
| biadani.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| biadani | ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32 453 | . 2 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ ((𝜓 ∧ 𝜑) ↔ (𝜓 ∧ 𝜒))) | |
| 2 | biadani.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | pm4.71ri 392 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| 4 | 3 | bibi1i 228 | . 2 ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) ↔ ((𝜓 ∧ 𝜑) ↔ (𝜓 ∧ 𝜒))) |
| 5 | 1, 4 | bitr4i 187 | 1 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biadanii 613 |
| Copyright terms: Public domain | W3C validator |