ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biadani GIF version

Theorem biadani 607
Description: An implication implies to the equivalence of some implied equivalence and some other equivalence involving a conjunction. (Contributed by BJ, 4-Mar-2023.)
Hypothesis
Ref Expression
biadani.1 (𝜑𝜓)
Assertion
Ref Expression
biadani ((𝜓 → (𝜑𝜒)) ↔ (𝜑 ↔ (𝜓𝜒)))

Proof of Theorem biadani
StepHypRef Expression
1 pm5.32 450 . 2 ((𝜓 → (𝜑𝜒)) ↔ ((𝜓𝜑) ↔ (𝜓𝜒)))
2 biadani.1 . . . 4 (𝜑𝜓)
32pm4.71ri 390 . . 3 (𝜑 ↔ (𝜓𝜑))
43bibi1i 227 . 2 ((𝜑 ↔ (𝜓𝜒)) ↔ ((𝜓𝜑) ↔ (𝜓𝜒)))
51, 4bitr4i 186 1 ((𝜓 → (𝜑𝜒)) ↔ (𝜑 ↔ (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  biadanii  608
  Copyright terms: Public domain W3C validator