| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr4i | GIF version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
| bitr4i.2 | ⊢ (𝜒 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bitr4i | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bitr4i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | bicomi 132 | . 2 ⊢ (𝜓 ↔ 𝜒) |
| 4 | 1, 3 | bitri 184 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitr2i 208 3bitr2ri 209 3bitr4i 212 3bitr4ri 213 biancomi 270 imdistan 444 bianass 469 biadani 614 mpbiran 945 mpbiran2 946 3anrev 993 an6 1336 nfand 1594 19.33b2 1655 nf3 1695 nf4dc 1696 nf4r 1697 equsalh 1752 sb6x 1805 sb5f 1830 sbidm 1877 sb5 1914 sbanv 1916 sborv 1917 sbhb 1971 sb3an 1989 sbel2x 2029 sbal1yz 2032 sbexyz 2034 eu2 2102 2eu4 2151 cleqh 2309 cleqf 2377 dcne 2391 necon3bii 2418 ne3anior 2468 r2alf 2527 r2exf 2528 r19.23t 2618 r19.26-3 2641 r19.26m 2642 r19.43 2669 rabid2 2688 isset 2786 ralv 2797 rexv 2798 reuv 2799 rmov 2800 rexcom4b 2805 ceqsex4v 2824 ceqsex8v 2826 ceqsrexv 2913 ralrab2 2948 rexrab2 2950 reu2 2971 reu3 2973 reueq 2982 2reuswapdc 2987 reuind 2988 sbc3an 3070 rmo2ilem 3099 csbcow 3115 ssalel 3192 dfss3 3193 dfss3f 3196 ssabral 3275 rabss 3281 ssrabeq 3291 uniiunlem 3293 dfdif3 3294 ddifstab 3316 uncom 3328 inass 3394 indi 3431 difindiss 3438 difin2 3446 reupick3 3469 n0rf 3484 eq0 3490 eqv 3491 vss 3519 disj 3520 disj3 3524 undisj1 3529 undisj2 3530 exsnrex 3688 euabsn2 3715 euabsn 3716 snmb 3767 prssg 3804 dfuni2 3869 unissb 3897 elint2 3909 ssint 3918 dfiin2g 3977 iunn0m 4005 iunxun 4024 iunxiun 4026 iinpw 4035 disjnim 4052 dftr2 4163 dftr5 4164 dftr3 4165 dftr4 4166 vnex 4194 inuni 4218 snelpw 4277 sspwb 4281 opelopabsb 4327 eusv2 4525 orddif 4616 onintexmid 4642 zfregfr 4643 tfi 4651 opthprc 4747 elxp3 4750 xpiundir 4755 elvv 4758 brinxp2 4763 relsn 4801 reliun 4817 inxp 4833 raliunxp 4840 rexiunxp 4841 cnvuni 4885 dm0rn0 4917 elrn 4943 ssdmres 5003 dfres2 5033 dfima2 5046 args 5073 cotr 5086 intasym 5089 asymref 5090 intirr 5091 cnv0 5108 xp11m 5143 cnvresima 5194 resco 5209 rnco 5211 coiun 5214 coass 5223 dfiota2 5255 dffun2 5304 dffun6f 5307 dffun4f 5310 dffun7 5321 dffun9 5323 funfn 5324 svrelfun 5362 imadiflem 5376 dffn2 5451 dffn3 5460 fintm 5487 dffn4 5530 dff1o4 5556 brprcneu 5596 eqfnfv3 5707 fnreseql 5718 fsn 5780 abrexco 5856 imaiun 5857 mpo2eqb 6085 elovmpo 6175 abexex 6241 releldm2 6301 fnmpo 6318 dftpos4 6379 tfrlem7 6433 0er 6684 eroveu 6743 erovlem 6744 map0e 6803 elixpconst 6823 domen 6870 reuen1 6923 xpf1o 6973 ssfilem 7005 finexdc 7032 pw1dc0el 7041 ssfirab 7066 sbthlemi10 7101 djuexb 7179 iftrueb01 7376 pw1if 7378 dmaddpq 7534 dmmulpq 7535 distrnqg 7542 enq0enq 7586 enq0tr 7589 nqnq0pi 7593 distrnq0 7614 prltlu 7642 prarloc 7658 genpdflem 7662 ltexprlemm 7755 ltexprlemlol 7757 ltexprlemupu 7759 ltexprlemdisj 7761 recexprlemdisj 7785 ltresr 7994 elnnz 9424 dfz2 9487 2rexuz 9745 eluz2b1 9764 elxr 9940 elixx1 10061 elioo2 10085 elioopnf 10131 elicopnf 10133 elfz1 10177 fzdifsuc 10245 fznn 10253 fzp1nel 10268 fznn0 10277 dfrp2 10450 redivap 11351 imdivap 11358 rexanre 11697 climreu 11774 prodmodc 12055 3dvdsdec 12342 3dvds2dec 12343 bitsval 12420 bezoutlembi 12492 nnwosdc 12526 isprm2 12605 isprm3 12606 isprm4 12607 pythagtriplem2 12755 elgz 12860 inffinp1 12966 isnsg4 13715 isrng 13863 isring 13929 dfrhm2 14083 lss1d 14312 isbasis3g 14685 restsn 14819 lmbr 14852 txbas 14897 tx2cn 14909 elcncf1di 15218 dedekindicclemicc 15271 limcrcl 15297 bj-nnor 16008 bj-vprc 16169 ss1oel2o 16265 subctctexmid 16277 trirec0xor 16324 |
| Copyright terms: Public domain | W3C validator |