![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr4i | GIF version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
bitr4i.2 | ⊢ (𝜒 ↔ 𝜓) |
Ref | Expression |
---|---|
bitr4i | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | bitr4i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 2 | bicomi 132 | . 2 ⊢ (𝜓 ↔ 𝜒) |
4 | 1, 3 | bitri 184 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitr2i 208 3bitr2ri 209 3bitr4i 212 3bitr4ri 213 biancomi 270 imdistan 444 bianass 469 biadani 612 mpbiran 942 mpbiran2 943 3anrev 990 an6 1332 nfand 1579 19.33b2 1640 nf3 1680 nf4dc 1681 nf4r 1682 equsalh 1737 sb6x 1790 sb5f 1815 sbidm 1862 sb5 1899 sbanv 1901 sborv 1902 sbhb 1956 sb3an 1974 sbel2x 2014 sbal1yz 2017 sbexyz 2019 eu2 2086 2eu4 2135 cleqh 2293 cleqf 2361 dcne 2375 necon3bii 2402 ne3anior 2452 r2alf 2511 r2exf 2512 r19.23t 2601 r19.26-3 2624 r19.26m 2625 r19.43 2652 rabid2 2671 isset 2766 ralv 2777 rexv 2778 reuv 2779 rmov 2780 rexcom4b 2785 ceqsex4v 2804 ceqsex8v 2806 ceqsrexv 2891 ralrab2 2926 rexrab2 2928 reu2 2949 reu3 2951 reueq 2960 2reuswapdc 2965 reuind 2966 sbc3an 3048 rmo2ilem 3076 csbcow 3092 dfss2 3169 dfss3 3170 dfss3f 3172 ssabral 3251 rabss 3257 ssrabeq 3267 uniiunlem 3269 dfdif3 3270 ddifstab 3292 uncom 3304 inass 3370 indi 3407 difindiss 3414 difin2 3422 reupick3 3445 n0rf 3460 eq0 3466 eqv 3467 vss 3495 disj 3496 disj3 3500 undisj1 3505 undisj2 3506 exsnrex 3661 euabsn2 3688 euabsn 3689 prssg 3776 dfuni2 3838 unissb 3866 elint2 3878 ssint 3887 dfiin2g 3946 iunn0m 3974 iunxun 3993 iunxiun 3995 iinpw 4004 disjnim 4021 dftr2 4130 dftr5 4131 dftr3 4132 dftr4 4133 vnex 4161 inuni 4185 snelpw 4243 sspwb 4246 opelopabsb 4291 eusv2 4489 orddif 4580 onintexmid 4606 zfregfr 4607 tfi 4615 opthprc 4711 elxp3 4714 xpiundir 4719 elvv 4722 brinxp2 4727 relsn 4765 reliun 4781 inxp 4797 raliunxp 4804 rexiunxp 4805 cnvuni 4849 dm0rn0 4880 elrn 4906 ssdmres 4965 dfres2 4995 dfima2 5008 args 5035 cotr 5048 intasym 5051 asymref 5052 intirr 5053 cnv0 5070 xp11m 5105 cnvresima 5156 resco 5171 rnco 5173 coiun 5176 coass 5185 dfiota2 5217 dffun2 5265 dffun6f 5268 dffun4f 5271 dffun7 5282 dffun9 5284 funfn 5285 svrelfun 5320 imadiflem 5334 dffn2 5406 dffn3 5415 fintm 5440 dffn4 5483 dff1o4 5509 brprcneu 5548 eqfnfv3 5658 fnreseql 5669 fsn 5731 abrexco 5803 imaiun 5804 mpo2eqb 6029 elovmpo 6119 abexex 6180 releldm2 6240 fnmpo 6257 dftpos4 6318 tfrlem7 6372 0er 6623 eroveu 6682 erovlem 6683 map0e 6742 elixpconst 6762 domen 6807 reuen1 6857 xpf1o 6902 ssfilem 6933 finexdc 6960 pw1dc0el 6969 ssfirab 6992 sbthlemi10 7027 djuexb 7105 dmaddpq 7441 dmmulpq 7442 distrnqg 7449 enq0enq 7493 enq0tr 7496 nqnq0pi 7500 distrnq0 7521 prltlu 7549 prarloc 7565 genpdflem 7569 ltexprlemm 7662 ltexprlemlol 7664 ltexprlemupu 7666 ltexprlemdisj 7668 recexprlemdisj 7692 ltresr 7901 elnnz 9330 dfz2 9392 2rexuz 9650 eluz2b1 9669 elxr 9845 elixx1 9966 elioo2 9990 elioopnf 10036 elicopnf 10038 elfz1 10082 fzdifsuc 10150 fznn 10158 fzp1nel 10173 fznn0 10182 dfrp2 10335 redivap 11021 imdivap 11028 rexanre 11367 climreu 11443 prodmodc 11724 3dvdsdec 12009 3dvds2dec 12010 bezoutlembi 12145 nnwosdc 12179 isprm2 12258 isprm3 12259 isprm4 12260 pythagtriplem2 12407 elgz 12512 inffinp1 12589 isnsg4 13285 isrng 13433 isring 13499 dfrhm2 13653 lss1d 13882 isbasis3g 14225 restsn 14359 lmbr 14392 txbas 14437 tx2cn 14449 elcncf1di 14758 dedekindicclemicc 14811 limcrcl 14837 bj-nnor 15296 bj-vprc 15458 ss1oel2o 15554 subctctexmid 15561 trirec0xor 15605 |
Copyright terms: Public domain | W3C validator |