Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr4i | GIF version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
bitr4i.2 | ⊢ (𝜒 ↔ 𝜓) |
Ref | Expression |
---|---|
bitr4i | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | bitr4i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 2 | bicomi 131 | . 2 ⊢ (𝜓 ↔ 𝜒) |
4 | 1, 3 | bitri 183 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitr2i 207 3bitr2ri 208 3bitr4i 211 3bitr4ri 212 biancomi 268 imdistan 441 biadani 602 mpbiran 930 mpbiran2 931 3anrev 978 an6 1311 nfand 1556 19.33b2 1617 nf3 1657 nf4dc 1658 nf4r 1659 equsalh 1714 sb6x 1767 sb5f 1792 sbidm 1839 sb5 1875 sbanv 1877 sborv 1878 sbhb 1928 sb3an 1946 sbel2x 1986 sbal1yz 1989 sbexyz 1991 eu2 2058 2eu4 2107 cleqh 2266 cleqf 2333 dcne 2347 necon3bii 2374 ne3anior 2424 r2alf 2483 r2exf 2484 r19.23t 2573 r19.26-3 2596 r19.26m 2597 r19.43 2624 rabid2 2642 isset 2732 ralv 2743 rexv 2744 reuv 2745 rmov 2746 rexcom4b 2751 ceqsex4v 2769 ceqsex8v 2771 ceqsrexv 2856 ralrab2 2891 rexrab2 2893 reu2 2914 reu3 2916 reueq 2925 2reuswapdc 2930 reuind 2931 sbc3an 3012 rmo2ilem 3040 csbcow 3056 dfss2 3131 dfss3 3132 dfss3f 3134 ssabral 3213 rabss 3219 ssrabeq 3229 uniiunlem 3231 dfdif3 3232 ddifstab 3254 uncom 3266 inass 3332 indi 3369 difindiss 3376 difin2 3384 reupick3 3407 n0rf 3421 eq0 3427 eqv 3428 vss 3456 disj 3457 disj3 3461 undisj1 3466 undisj2 3467 exsnrex 3618 euabsn2 3645 euabsn 3646 prssg 3730 dfuni2 3791 unissb 3819 elint2 3831 ssint 3840 dfiin2g 3899 iunn0m 3926 iunxun 3945 iunxiun 3947 iinpw 3956 disjnim 3973 dftr2 4082 dftr5 4083 dftr3 4084 dftr4 4085 vnex 4113 inuni 4134 snelpw 4191 sspwb 4194 opelopabsb 4238 eusv2 4435 orddif 4524 onintexmid 4550 zfregfr 4551 tfi 4559 opthprc 4655 elxp3 4658 xpiundir 4663 elvv 4666 brinxp2 4671 relsn 4709 reliun 4725 inxp 4738 raliunxp 4745 rexiunxp 4746 cnvuni 4790 dm0rn0 4821 elrn 4847 ssdmres 4906 dfres2 4936 dfima2 4948 args 4973 cotr 4985 intasym 4988 asymref 4989 intirr 4990 cnv0 5007 xp11m 5042 cnvresima 5093 resco 5108 rnco 5110 coiun 5113 coass 5122 dfiota2 5154 dffun2 5198 dffun6f 5201 dffun4f 5204 dffun7 5215 dffun9 5217 funfn 5218 svrelfun 5253 imadiflem 5267 dffn2 5339 dffn3 5348 fintm 5373 dffn4 5416 dff1o4 5440 brprcneu 5479 eqfnfv3 5585 fnreseql 5595 fsn 5657 abrexco 5727 imaiun 5728 mpo2eqb 5951 elovmpo 6039 abexex 6094 releldm2 6153 fnmpo 6170 dftpos4 6231 tfrlem7 6285 0er 6535 eroveu 6592 erovlem 6593 map0e 6652 elixpconst 6672 domen 6717 reuen1 6767 xpf1o 6810 ssfilem 6841 finexdc 6868 pw1dc0el 6877 ssfirab 6899 sbthlemi10 6931 djuexb 7009 dmaddpq 7320 dmmulpq 7321 distrnqg 7328 enq0enq 7372 enq0tr 7375 nqnq0pi 7379 distrnq0 7400 prltlu 7428 prarloc 7444 genpdflem 7448 ltexprlemm 7541 ltexprlemlol 7543 ltexprlemupu 7545 ltexprlemdisj 7547 recexprlemdisj 7571 ltresr 7780 elnnz 9201 dfz2 9263 2rexuz 9520 eluz2b1 9539 elxr 9712 elixx1 9833 elioo2 9857 elioopnf 9903 elicopnf 9905 elfz1 9949 fzdifsuc 10016 fznn 10024 fzp1nel 10039 fznn0 10048 dfrp2 10199 redivap 10816 imdivap 10823 rexanre 11162 climreu 11238 prodmodc 11519 3dvdsdec 11802 3dvds2dec 11803 bezoutlembi 11938 nnwosdc 11972 isprm2 12049 isprm3 12050 isprm4 12051 pythagtriplem2 12198 elgz 12301 inffinp1 12362 isbasis3g 12684 restsn 12820 lmbr 12853 txbas 12898 tx2cn 12910 elcncf1di 13206 dedekindicclemicc 13250 limcrcl 13267 bj-nnor 13615 bj-vprc 13778 ss1oel2o 13873 subctctexmid 13881 trirec0xor 13924 |
Copyright terms: Public domain | W3C validator |