| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr4i | GIF version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
| bitr4i.2 | ⊢ (𝜒 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bitr4i | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bitr4i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | bicomi 132 | . 2 ⊢ (𝜓 ↔ 𝜒) |
| 4 | 1, 3 | bitri 184 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitr2i 208 3bitr2ri 209 3bitr4i 212 3bitr4ri 213 biancomi 270 imdistan 444 bianass 469 biadani 614 mpbiran 946 mpbiran2 947 3anrev 1012 an6 1355 nfand 1614 19.33b2 1675 nf3 1715 nf4dc 1716 nf4r 1717 equsalh 1772 sb6x 1825 sb5f 1850 sbidm 1897 sb5 1934 sbanv 1936 sborv 1937 sbhb 1991 sb3an 2009 sbel2x 2049 sbal1yz 2052 sbexyz 2054 eu2 2122 2eu4 2171 cleqh 2329 cleqf 2397 dcne 2411 necon3bii 2438 ne3anior 2488 r2alf 2547 r2exf 2548 r19.23t 2638 r19.26-3 2661 r19.26m 2662 r19.43 2689 rabid2 2708 isset 2806 ralv 2817 rexv 2818 reuv 2819 rmov 2820 rexcom4b 2825 ceqsex4v 2844 ceqsex8v 2846 ceqsrexv 2933 ralrab2 2968 rexrab2 2970 reu2 2991 reu3 2993 reueq 3002 2reuswapdc 3007 reuind 3008 sbc3an 3090 rmo2ilem 3119 csbcow 3135 ssalel 3212 dfss3 3213 dfss3f 3216 ssabral 3295 rabss 3301 ssrabeq 3311 uniiunlem 3313 dfdif3 3314 ddifstab 3336 uncom 3348 inass 3414 indi 3451 difindiss 3458 difin2 3466 reupick3 3489 n0rf 3504 eq0 3510 eqv 3511 vss 3539 disj 3540 disj3 3544 undisj1 3549 undisj2 3550 exsnrex 3708 euabsn2 3735 euabsn 3736 snmb 3788 prssg 3825 dfuni2 3890 unissb 3918 elint2 3930 ssint 3939 dfiin2g 3998 iunn0m 4026 iunxun 4045 iunxiun 4047 iinpw 4056 disjnim 4073 dftr2 4184 dftr5 4185 dftr3 4186 dftr4 4187 vnex 4215 inuni 4239 snelpw 4298 sspwb 4302 opelopabsb 4348 eusv2 4548 orddif 4639 onintexmid 4665 zfregfr 4666 tfi 4674 opthprc 4770 elxp3 4773 xpiundir 4778 elvv 4781 brinxp2 4786 relsn 4824 reliun 4840 inxp 4856 raliunxp 4863 rexiunxp 4864 cnvuni 4908 dm0rn0 4940 elrn 4967 ssdmres 5027 dfres2 5057 dfima2 5070 args 5097 cotr 5110 intasym 5113 asymref 5114 intirr 5115 cnv0 5132 xp11m 5167 cnvresima 5218 resco 5233 rnco 5235 coiun 5238 coass 5247 dfiota2 5279 dffun2 5328 dffun6f 5331 dffun4f 5334 dffun7 5345 dffun9 5347 funfn 5348 svrelfun 5386 imadiflem 5400 dffn2 5475 dffn3 5484 fintm 5513 dffn4 5556 dff1o4 5582 brprcneu 5622 eqfnfv3 5736 fnreseql 5747 fsn 5809 abrexco 5889 imaiun 5890 mpo2eqb 6120 elovmpo 6210 abexex 6277 releldm2 6337 fnmpo 6354 dftpos4 6415 tfrlem7 6469 0er 6722 eroveu 6781 erovlem 6782 map0e 6841 elixpconst 6861 domen 6908 reuen1 6961 xpf1o 7013 ssfilem 7045 finexdc 7072 pw1dc0el 7081 ssfirab 7106 sbthlemi10 7141 djuexb 7219 iftrueb01 7416 pw1if 7418 dmaddpq 7574 dmmulpq 7575 distrnqg 7582 enq0enq 7626 enq0tr 7629 nqnq0pi 7633 distrnq0 7654 prltlu 7682 prarloc 7698 genpdflem 7702 ltexprlemm 7795 ltexprlemlol 7797 ltexprlemupu 7799 ltexprlemdisj 7801 recexprlemdisj 7825 ltresr 8034 elnnz 9464 dfz2 9527 2rexuz 9785 eluz2b1 9804 elxr 9980 elixx1 10101 elioo2 10125 elioopnf 10171 elicopnf 10173 elfz1 10217 fzdifsuc 10285 fznn 10293 fzp1nel 10308 fznn0 10317 dfrp2 10491 redivap 11393 imdivap 11400 rexanre 11739 climreu 11816 prodmodc 12097 3dvdsdec 12384 3dvds2dec 12385 bitsval 12462 bezoutlembi 12534 nnwosdc 12568 isprm2 12647 isprm3 12648 isprm4 12649 pythagtriplem2 12797 elgz 12902 inffinp1 13008 isnsg4 13757 isrng 13905 isring 13971 dfrhm2 14126 lss1d 14355 isbasis3g 14728 restsn 14862 lmbr 14895 txbas 14940 tx2cn 14952 elcncf1di 15261 dedekindicclemicc 15314 limcrcl 15340 bj-nnor 16122 bj-vprc 16283 ss1oel2o 16380 subctctexmid 16395 trirec0xor 16443 |
| Copyright terms: Public domain | W3C validator |