| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr4i | GIF version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
| bitr4i.2 | ⊢ (𝜒 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bitr4i | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bitr4i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | bicomi 132 | . 2 ⊢ (𝜓 ↔ 𝜒) |
| 4 | 1, 3 | bitri 184 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitr2i 208 3bitr2ri 209 3bitr4i 212 3bitr4ri 213 biancomi 270 imdistan 444 bianass 469 biadani 612 mpbiran 942 mpbiran2 943 3anrev 990 an6 1332 nfand 1582 19.33b2 1643 nf3 1683 nf4dc 1684 nf4r 1685 equsalh 1740 sb6x 1793 sb5f 1818 sbidm 1865 sb5 1902 sbanv 1904 sborv 1905 sbhb 1959 sb3an 1977 sbel2x 2017 sbal1yz 2020 sbexyz 2022 eu2 2089 2eu4 2138 cleqh 2296 cleqf 2364 dcne 2378 necon3bii 2405 ne3anior 2455 r2alf 2514 r2exf 2515 r19.23t 2604 r19.26-3 2627 r19.26m 2628 r19.43 2655 rabid2 2674 isset 2769 ralv 2780 rexv 2781 reuv 2782 rmov 2783 rexcom4b 2788 ceqsex4v 2807 ceqsex8v 2809 ceqsrexv 2894 ralrab2 2929 rexrab2 2931 reu2 2952 reu3 2954 reueq 2963 2reuswapdc 2968 reuind 2969 sbc3an 3051 rmo2ilem 3079 csbcow 3095 ssalel 3172 dfss3 3173 dfss3f 3176 ssabral 3255 rabss 3261 ssrabeq 3271 uniiunlem 3273 dfdif3 3274 ddifstab 3296 uncom 3308 inass 3374 indi 3411 difindiss 3418 difin2 3426 reupick3 3449 n0rf 3464 eq0 3470 eqv 3471 vss 3499 disj 3500 disj3 3504 undisj1 3509 undisj2 3510 exsnrex 3665 euabsn2 3692 euabsn 3693 prssg 3780 dfuni2 3842 unissb 3870 elint2 3882 ssint 3891 dfiin2g 3950 iunn0m 3978 iunxun 3997 iunxiun 3999 iinpw 4008 disjnim 4025 dftr2 4134 dftr5 4135 dftr3 4136 dftr4 4137 vnex 4165 inuni 4189 snelpw 4247 sspwb 4250 opelopabsb 4295 eusv2 4493 orddif 4584 onintexmid 4610 zfregfr 4611 tfi 4619 opthprc 4715 elxp3 4718 xpiundir 4723 elvv 4726 brinxp2 4731 relsn 4769 reliun 4785 inxp 4801 raliunxp 4808 rexiunxp 4809 cnvuni 4853 dm0rn0 4884 elrn 4910 ssdmres 4969 dfres2 4999 dfima2 5012 args 5039 cotr 5052 intasym 5055 asymref 5056 intirr 5057 cnv0 5074 xp11m 5109 cnvresima 5160 resco 5175 rnco 5177 coiun 5180 coass 5189 dfiota2 5221 dffun2 5269 dffun6f 5272 dffun4f 5275 dffun7 5286 dffun9 5288 funfn 5289 svrelfun 5324 imadiflem 5338 dffn2 5412 dffn3 5421 fintm 5446 dffn4 5489 dff1o4 5515 brprcneu 5554 eqfnfv3 5664 fnreseql 5675 fsn 5737 abrexco 5809 imaiun 5810 mpo2eqb 6036 elovmpo 6126 abexex 6192 releldm2 6252 fnmpo 6269 dftpos4 6330 tfrlem7 6384 0er 6635 eroveu 6694 erovlem 6695 map0e 6754 elixpconst 6774 domen 6819 reuen1 6869 xpf1o 6914 ssfilem 6945 finexdc 6972 pw1dc0el 6981 ssfirab 7006 sbthlemi10 7041 djuexb 7119 dmaddpq 7465 dmmulpq 7466 distrnqg 7473 enq0enq 7517 enq0tr 7520 nqnq0pi 7524 distrnq0 7545 prltlu 7573 prarloc 7589 genpdflem 7593 ltexprlemm 7686 ltexprlemlol 7688 ltexprlemupu 7690 ltexprlemdisj 7692 recexprlemdisj 7716 ltresr 7925 elnnz 9355 dfz2 9417 2rexuz 9675 eluz2b1 9694 elxr 9870 elixx1 9991 elioo2 10015 elioopnf 10061 elicopnf 10063 elfz1 10107 fzdifsuc 10175 fznn 10183 fzp1nel 10198 fznn0 10207 dfrp2 10372 redivap 11058 imdivap 11065 rexanre 11404 climreu 11481 prodmodc 11762 3dvdsdec 12049 3dvds2dec 12050 bitsval 12127 bezoutlembi 12199 nnwosdc 12233 isprm2 12312 isprm3 12313 isprm4 12314 pythagtriplem2 12462 elgz 12567 inffinp1 12673 isnsg4 13420 isrng 13568 isring 13634 dfrhm2 13788 lss1d 14017 isbasis3g 14368 restsn 14502 lmbr 14535 txbas 14580 tx2cn 14592 elcncf1di 14901 dedekindicclemicc 14954 limcrcl 14980 bj-nnor 15466 bj-vprc 15628 ss1oel2o 15724 subctctexmid 15733 trirec0xor 15780 |
| Copyright terms: Public domain | W3C validator |