Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr4i | GIF version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
bitr4i.2 | ⊢ (𝜒 ↔ 𝜓) |
Ref | Expression |
---|---|
bitr4i | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | bitr4i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 2 | bicomi 132 | . 2 ⊢ (𝜓 ↔ 𝜒) |
4 | 1, 3 | bitri 184 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitr2i 208 3bitr2ri 209 3bitr4i 212 3bitr4ri 213 biancomi 270 imdistan 444 bianass 469 biadani 612 mpbiran 940 mpbiran2 941 3anrev 988 an6 1321 nfand 1566 19.33b2 1627 nf3 1667 nf4dc 1668 nf4r 1669 equsalh 1724 sb6x 1777 sb5f 1802 sbidm 1849 sb5 1885 sbanv 1887 sborv 1888 sbhb 1938 sb3an 1956 sbel2x 1996 sbal1yz 1999 sbexyz 2001 eu2 2068 2eu4 2117 cleqh 2275 cleqf 2342 dcne 2356 necon3bii 2383 ne3anior 2433 r2alf 2492 r2exf 2493 r19.23t 2582 r19.26-3 2605 r19.26m 2606 r19.43 2633 rabid2 2651 isset 2741 ralv 2752 rexv 2753 reuv 2754 rmov 2755 rexcom4b 2760 ceqsex4v 2778 ceqsex8v 2780 ceqsrexv 2865 ralrab2 2900 rexrab2 2902 reu2 2923 reu3 2925 reueq 2934 2reuswapdc 2939 reuind 2940 sbc3an 3022 rmo2ilem 3050 csbcow 3066 dfss2 3142 dfss3 3143 dfss3f 3145 ssabral 3224 rabss 3230 ssrabeq 3240 uniiunlem 3242 dfdif3 3243 ddifstab 3265 uncom 3277 inass 3343 indi 3380 difindiss 3387 difin2 3395 reupick3 3418 n0rf 3433 eq0 3439 eqv 3440 vss 3468 disj 3469 disj3 3473 undisj1 3478 undisj2 3479 exsnrex 3631 euabsn2 3658 euabsn 3659 prssg 3746 dfuni2 3807 unissb 3835 elint2 3847 ssint 3856 dfiin2g 3915 iunn0m 3942 iunxun 3961 iunxiun 3963 iinpw 3972 disjnim 3989 dftr2 4098 dftr5 4099 dftr3 4100 dftr4 4101 vnex 4129 inuni 4150 snelpw 4207 sspwb 4210 opelopabsb 4254 eusv2 4451 orddif 4540 onintexmid 4566 zfregfr 4567 tfi 4575 opthprc 4671 elxp3 4674 xpiundir 4679 elvv 4682 brinxp2 4687 relsn 4725 reliun 4741 inxp 4754 raliunxp 4761 rexiunxp 4762 cnvuni 4806 dm0rn0 4837 elrn 4863 ssdmres 4922 dfres2 4952 dfima2 4965 args 4990 cotr 5002 intasym 5005 asymref 5006 intirr 5007 cnv0 5024 xp11m 5059 cnvresima 5110 resco 5125 rnco 5127 coiun 5130 coass 5139 dfiota2 5171 dffun2 5218 dffun6f 5221 dffun4f 5224 dffun7 5235 dffun9 5237 funfn 5238 svrelfun 5273 imadiflem 5287 dffn2 5359 dffn3 5368 fintm 5393 dffn4 5436 dff1o4 5461 brprcneu 5500 eqfnfv3 5607 fnreseql 5618 fsn 5680 abrexco 5750 imaiun 5751 mpo2eqb 5974 elovmpo 6062 abexex 6117 releldm2 6176 fnmpo 6193 dftpos4 6254 tfrlem7 6308 0er 6559 eroveu 6616 erovlem 6617 map0e 6676 elixpconst 6696 domen 6741 reuen1 6791 xpf1o 6834 ssfilem 6865 finexdc 6892 pw1dc0el 6901 ssfirab 6923 sbthlemi10 6955 djuexb 7033 dmaddpq 7353 dmmulpq 7354 distrnqg 7361 enq0enq 7405 enq0tr 7408 nqnq0pi 7412 distrnq0 7433 prltlu 7461 prarloc 7477 genpdflem 7481 ltexprlemm 7574 ltexprlemlol 7576 ltexprlemupu 7578 ltexprlemdisj 7580 recexprlemdisj 7604 ltresr 7813 elnnz 9236 dfz2 9298 2rexuz 9555 eluz2b1 9574 elxr 9747 elixx1 9868 elioo2 9892 elioopnf 9938 elicopnf 9940 elfz1 9984 fzdifsuc 10051 fznn 10059 fzp1nel 10074 fznn0 10083 dfrp2 10234 redivap 10851 imdivap 10858 rexanre 11197 climreu 11273 prodmodc 11554 3dvdsdec 11837 3dvds2dec 11838 bezoutlembi 11973 nnwosdc 12007 isprm2 12084 isprm3 12085 isprm4 12086 pythagtriplem2 12233 elgz 12336 inffinp1 12397 isring 12989 isbasis3g 13124 restsn 13260 lmbr 13293 txbas 13338 tx2cn 13350 elcncf1di 13646 dedekindicclemicc 13690 limcrcl 13707 bj-nnor 14055 bj-vprc 14217 ss1oel2o 14312 subctctexmid 14320 trirec0xor 14363 |
Copyright terms: Public domain | W3C validator |