| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr4i | GIF version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
| bitr4i.2 | ⊢ (𝜒 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bitr4i | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bitr4i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | bicomi 132 | . 2 ⊢ (𝜓 ↔ 𝜒) |
| 4 | 1, 3 | bitri 184 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitr2i 208 3bitr2ri 209 3bitr4i 212 3bitr4ri 213 biancomi 270 imdistan 444 bianass 469 biadani 612 mpbiran 943 mpbiran2 944 3anrev 991 an6 1334 nfand 1592 19.33b2 1653 nf3 1693 nf4dc 1694 nf4r 1695 equsalh 1750 sb6x 1803 sb5f 1828 sbidm 1875 sb5 1912 sbanv 1914 sborv 1915 sbhb 1969 sb3an 1987 sbel2x 2027 sbal1yz 2030 sbexyz 2032 eu2 2099 2eu4 2148 cleqh 2306 cleqf 2374 dcne 2388 necon3bii 2415 ne3anior 2465 r2alf 2524 r2exf 2525 r19.23t 2614 r19.26-3 2637 r19.26m 2638 r19.43 2665 rabid2 2684 isset 2779 ralv 2790 rexv 2791 reuv 2792 rmov 2793 rexcom4b 2798 ceqsex4v 2817 ceqsex8v 2819 ceqsrexv 2904 ralrab2 2939 rexrab2 2941 reu2 2962 reu3 2964 reueq 2973 2reuswapdc 2978 reuind 2979 sbc3an 3061 rmo2ilem 3089 csbcow 3105 ssalel 3182 dfss3 3183 dfss3f 3186 ssabral 3265 rabss 3271 ssrabeq 3281 uniiunlem 3283 dfdif3 3284 ddifstab 3306 uncom 3318 inass 3384 indi 3421 difindiss 3428 difin2 3436 reupick3 3459 n0rf 3474 eq0 3480 eqv 3481 vss 3509 disj 3510 disj3 3514 undisj1 3519 undisj2 3520 exsnrex 3676 euabsn2 3703 euabsn 3704 snmb 3755 prssg 3792 dfuni2 3854 unissb 3882 elint2 3894 ssint 3903 dfiin2g 3962 iunn0m 3990 iunxun 4009 iunxiun 4011 iinpw 4020 disjnim 4037 dftr2 4148 dftr5 4149 dftr3 4150 dftr4 4151 vnex 4179 inuni 4203 snelpw 4261 sspwb 4264 opelopabsb 4310 eusv2 4508 orddif 4599 onintexmid 4625 zfregfr 4626 tfi 4634 opthprc 4730 elxp3 4733 xpiundir 4738 elvv 4741 brinxp2 4746 relsn 4784 reliun 4800 inxp 4816 raliunxp 4823 rexiunxp 4824 cnvuni 4868 dm0rn0 4900 elrn 4926 ssdmres 4986 dfres2 5016 dfima2 5029 args 5056 cotr 5069 intasym 5072 asymref 5073 intirr 5074 cnv0 5091 xp11m 5126 cnvresima 5177 resco 5192 rnco 5194 coiun 5197 coass 5206 dfiota2 5238 dffun2 5286 dffun6f 5289 dffun4f 5292 dffun7 5303 dffun9 5305 funfn 5306 svrelfun 5344 imadiflem 5358 dffn2 5433 dffn3 5442 fintm 5468 dffn4 5511 dff1o4 5537 brprcneu 5576 eqfnfv3 5686 fnreseql 5697 fsn 5759 abrexco 5835 imaiun 5836 mpo2eqb 6062 elovmpo 6152 abexex 6218 releldm2 6278 fnmpo 6295 dftpos4 6356 tfrlem7 6410 0er 6661 eroveu 6720 erovlem 6721 map0e 6780 elixpconst 6800 domen 6847 reuen1 6900 xpf1o 6948 ssfilem 6979 finexdc 7006 pw1dc0el 7015 ssfirab 7040 sbthlemi10 7075 djuexb 7153 dmaddpq 7499 dmmulpq 7500 distrnqg 7507 enq0enq 7551 enq0tr 7554 nqnq0pi 7558 distrnq0 7579 prltlu 7607 prarloc 7623 genpdflem 7627 ltexprlemm 7720 ltexprlemlol 7722 ltexprlemupu 7724 ltexprlemdisj 7726 recexprlemdisj 7750 ltresr 7959 elnnz 9389 dfz2 9452 2rexuz 9710 eluz2b1 9729 elxr 9905 elixx1 10026 elioo2 10050 elioopnf 10096 elicopnf 10098 elfz1 10142 fzdifsuc 10210 fznn 10218 fzp1nel 10233 fznn0 10242 dfrp2 10413 redivap 11229 imdivap 11236 rexanre 11575 climreu 11652 prodmodc 11933 3dvdsdec 12220 3dvds2dec 12221 bitsval 12298 bezoutlembi 12370 nnwosdc 12404 isprm2 12483 isprm3 12484 isprm4 12485 pythagtriplem2 12633 elgz 12738 inffinp1 12844 isnsg4 13592 isrng 13740 isring 13806 dfrhm2 13960 lss1d 14189 isbasis3g 14562 restsn 14696 lmbr 14729 txbas 14774 tx2cn 14786 elcncf1di 15095 dedekindicclemicc 15148 limcrcl 15174 bj-nnor 15744 bj-vprc 15906 ss1oel2o 16002 subctctexmid 16011 trirec0xor 16058 |
| Copyright terms: Public domain | W3C validator |