Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr4i | GIF version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
bitr4i.2 | ⊢ (𝜒 ↔ 𝜓) |
Ref | Expression |
---|---|
bitr4i | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | bitr4i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 2 | bicomi 131 | . 2 ⊢ (𝜓 ↔ 𝜒) |
4 | 1, 3 | bitri 183 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitr2i 207 3bitr2ri 208 3bitr4i 211 3bitr4ri 212 biancomi 268 imdistan 442 bianass 466 biadani 607 mpbiran 935 mpbiran2 936 3anrev 983 an6 1316 nfand 1561 19.33b2 1622 nf3 1662 nf4dc 1663 nf4r 1664 equsalh 1719 sb6x 1772 sb5f 1797 sbidm 1844 sb5 1880 sbanv 1882 sborv 1883 sbhb 1933 sb3an 1951 sbel2x 1991 sbal1yz 1994 sbexyz 1996 eu2 2063 2eu4 2112 cleqh 2270 cleqf 2337 dcne 2351 necon3bii 2378 ne3anior 2428 r2alf 2487 r2exf 2488 r19.23t 2577 r19.26-3 2600 r19.26m 2601 r19.43 2628 rabid2 2646 isset 2736 ralv 2747 rexv 2748 reuv 2749 rmov 2750 rexcom4b 2755 ceqsex4v 2773 ceqsex8v 2775 ceqsrexv 2860 ralrab2 2895 rexrab2 2897 reu2 2918 reu3 2920 reueq 2929 2reuswapdc 2934 reuind 2935 sbc3an 3016 rmo2ilem 3044 csbcow 3060 dfss2 3136 dfss3 3137 dfss3f 3139 ssabral 3218 rabss 3224 ssrabeq 3234 uniiunlem 3236 dfdif3 3237 ddifstab 3259 uncom 3271 inass 3337 indi 3374 difindiss 3381 difin2 3389 reupick3 3412 n0rf 3427 eq0 3433 eqv 3434 vss 3462 disj 3463 disj3 3467 undisj1 3472 undisj2 3473 exsnrex 3625 euabsn2 3652 euabsn 3653 prssg 3737 dfuni2 3798 unissb 3826 elint2 3838 ssint 3847 dfiin2g 3906 iunn0m 3933 iunxun 3952 iunxiun 3954 iinpw 3963 disjnim 3980 dftr2 4089 dftr5 4090 dftr3 4091 dftr4 4092 vnex 4120 inuni 4141 snelpw 4198 sspwb 4201 opelopabsb 4245 eusv2 4442 orddif 4531 onintexmid 4557 zfregfr 4558 tfi 4566 opthprc 4662 elxp3 4665 xpiundir 4670 elvv 4673 brinxp2 4678 relsn 4716 reliun 4732 inxp 4745 raliunxp 4752 rexiunxp 4753 cnvuni 4797 dm0rn0 4828 elrn 4854 ssdmres 4913 dfres2 4943 dfima2 4955 args 4980 cotr 4992 intasym 4995 asymref 4996 intirr 4997 cnv0 5014 xp11m 5049 cnvresima 5100 resco 5115 rnco 5117 coiun 5120 coass 5129 dfiota2 5161 dffun2 5208 dffun6f 5211 dffun4f 5214 dffun7 5225 dffun9 5227 funfn 5228 svrelfun 5263 imadiflem 5277 dffn2 5349 dffn3 5358 fintm 5383 dffn4 5426 dff1o4 5450 brprcneu 5489 eqfnfv3 5595 fnreseql 5606 fsn 5668 abrexco 5738 imaiun 5739 mpo2eqb 5962 elovmpo 6050 abexex 6105 releldm2 6164 fnmpo 6181 dftpos4 6242 tfrlem7 6296 0er 6547 eroveu 6604 erovlem 6605 map0e 6664 elixpconst 6684 domen 6729 reuen1 6779 xpf1o 6822 ssfilem 6853 finexdc 6880 pw1dc0el 6889 ssfirab 6911 sbthlemi10 6943 djuexb 7021 dmaddpq 7341 dmmulpq 7342 distrnqg 7349 enq0enq 7393 enq0tr 7396 nqnq0pi 7400 distrnq0 7421 prltlu 7449 prarloc 7465 genpdflem 7469 ltexprlemm 7562 ltexprlemlol 7564 ltexprlemupu 7566 ltexprlemdisj 7568 recexprlemdisj 7592 ltresr 7801 elnnz 9222 dfz2 9284 2rexuz 9541 eluz2b1 9560 elxr 9733 elixx1 9854 elioo2 9878 elioopnf 9924 elicopnf 9926 elfz1 9970 fzdifsuc 10037 fznn 10045 fzp1nel 10060 fznn0 10069 dfrp2 10220 redivap 10838 imdivap 10845 rexanre 11184 climreu 11260 prodmodc 11541 3dvdsdec 11824 3dvds2dec 11825 bezoutlembi 11960 nnwosdc 11994 isprm2 12071 isprm3 12072 isprm4 12073 pythagtriplem2 12220 elgz 12323 inffinp1 12384 isbasis3g 12838 restsn 12974 lmbr 13007 txbas 13052 tx2cn 13064 elcncf1di 13360 dedekindicclemicc 13404 limcrcl 13421 bj-nnor 13769 bj-vprc 13931 ss1oel2o 14026 subctctexmid 14034 trirec0xor 14077 |
Copyright terms: Public domain | W3C validator |