ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biadani Unicode version

Theorem biadani 602
Description: An implication implies to the equivalence of some implied equivalence and some other equivalence involving a conjunction. (Contributed by BJ, 4-Mar-2023.)
Hypothesis
Ref Expression
biadani.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
biadani  |-  ( ( ps  ->  ( ph  <->  ch ) )  <->  ( ph  <->  ( ps  /\  ch )
) )

Proof of Theorem biadani
StepHypRef Expression
1 pm5.32 449 . 2  |-  ( ( ps  ->  ( ph  <->  ch ) )  <->  ( ( ps  /\  ph )  <->  ( ps  /\ 
ch ) ) )
2 biadani.1 . . . 4  |-  ( ph  ->  ps )
32pm4.71ri 390 . . 3  |-  ( ph  <->  ( ps  /\  ph )
)
43bibi1i 227 . 2  |-  ( (
ph 
<->  ( ps  /\  ch ) )  <->  ( ( ps  /\  ph )  <->  ( ps  /\ 
ch ) ) )
51, 4bitr4i 186 1  |-  ( ( ps  ->  ( ph  <->  ch ) )  <->  ( ph  <->  ( ps  /\  ch )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  biadanii  603
  Copyright terms: Public domain W3C validator