| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bibi1i | GIF version | ||
| Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bibi.a | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bibi1i | ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom 140 | . 2 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜒 ↔ 𝜑)) | |
| 2 | bibi.a | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | bibi2i 227 | . 2 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
| 4 | bicom 140 | . 2 ⊢ ((𝜒 ↔ 𝜓) ↔ (𝜓 ↔ 𝜒)) | |
| 5 | 1, 3, 4 | 3bitri 206 | 1 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi12i 229 biadani 612 bilukdc 1407 sbrbis 1980 necon1abiddc 2429 necon1bbiddc 2430 necon4abiddc 2440 elrab3t 2919 ddifstab 3295 ssequn1 3333 asymref 5055 |
| Copyright terms: Public domain | W3C validator |