Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bibi1i | GIF version |
Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bibi.a | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
bibi1i | ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 139 | . 2 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜒 ↔ 𝜑)) | |
2 | bibi.a | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | bibi2i 226 | . 2 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
4 | bicom 139 | . 2 ⊢ ((𝜒 ↔ 𝜓) ↔ (𝜓 ↔ 𝜒)) | |
5 | 1, 3, 4 | 3bitri 205 | 1 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bibi12i 228 biadani 607 bilukdc 1391 sbrbis 1954 necon1abiddc 2402 necon1bbiddc 2403 necon4abiddc 2413 elrab3t 2885 ddifstab 3259 ssequn1 3297 asymref 4996 |
Copyright terms: Public domain | W3C validator |