Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bianassc | GIF version |
Description: An inference to merge two lists of conjuncts. (Contributed by Peter Mazsa, 24-Sep-2022.) |
Ref | Expression |
---|---|
bianass.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
bianassc | ⊢ ((𝜂 ∧ 𝜑) ↔ ((𝜓 ∧ 𝜂) ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bianass.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | bianass 466 | . 2 ⊢ ((𝜂 ∧ 𝜑) ↔ ((𝜂 ∧ 𝜓) ∧ 𝜒)) |
3 | ancom 264 | . . 3 ⊢ ((𝜂 ∧ 𝜓) ↔ (𝜓 ∧ 𝜂)) | |
4 | 3 | anbi1i 455 | . 2 ⊢ (((𝜂 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜓 ∧ 𝜂) ∧ 𝜒)) |
5 | 2, 4 | bitri 183 | 1 ⊢ ((𝜂 ∧ 𝜑) ↔ ((𝜓 ∧ 𝜂) ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: an21 468 |
Copyright terms: Public domain | W3C validator |