| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > bianassc | GIF version | ||
| Description: An inference to merge two lists of conjuncts. (Contributed by Peter Mazsa, 24-Sep-2022.) | 
| Ref | Expression | 
|---|---|
| bianass.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | 
| Ref | Expression | 
|---|---|
| bianassc | ⊢ ((𝜂 ∧ 𝜑) ↔ ((𝜓 ∧ 𝜂) ∧ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bianass.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | bianass 469 | . 2 ⊢ ((𝜂 ∧ 𝜑) ↔ ((𝜂 ∧ 𝜓) ∧ 𝜒)) | 
| 3 | ancom 266 | . . 3 ⊢ ((𝜂 ∧ 𝜓) ↔ (𝜓 ∧ 𝜂)) | |
| 4 | 3 | anbi1i 458 | . 2 ⊢ (((𝜂 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜓 ∧ 𝜂) ∧ 𝜒)) | 
| 5 | 2, 4 | bitri 184 | 1 ⊢ ((𝜂 ∧ 𝜑) ↔ ((𝜓 ∧ 𝜂) ∧ 𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: an21 471 | 
| Copyright terms: Public domain | W3C validator |