| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anbi1i | GIF version | ||
| Description: Introduce a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| bi.aa | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| anbi1i | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi.aa | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | pm5.32ri 455 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anbi2ci 459 anbi12i 460 bianassc 470 an12 561 anandi 592 pm5.53 807 pm5.75 968 3ancoma 1009 3ioran 1017 an6 1355 19.26-3an 1529 19.28h 1608 19.28 1609 eeeanv 1984 sb3an 2009 moanim 2152 nfrexdya 2566 r19.26-3 2661 r19.41 2686 rexcomf 2693 3reeanv 2702 cbvreu 2763 ceqsex3v 2843 rexab 2965 rexrab 2966 rmo4 2996 rmo3f 3000 reuind 3008 sbc3an 3090 rmo3 3121 ssrab 3302 rexun 3384 elin3 3395 inass 3414 unssdif 3439 indifdir 3460 difin2 3466 inrab2 3477 rabun2 3483 reuun2 3487 undif4 3554 rexdifpr 3694 rexsns 3705 rexdifsn 3799 2ralunsn 3876 iuncom4 3971 iunxiun 4046 inuni 4238 unidif0 4250 bnd2 4256 otth2 4326 copsexg 4329 copsex4g 4332 opeqsn 4338 opelopabsbALT 4346 elpwpwel 4565 suc11g 4648 rabxp 4755 opeliunxp 4773 xpundir 4775 xpiundi 4776 xpiundir 4777 brinxp2 4785 rexiunxp 4863 brres 5010 brresg 5012 dmres 5025 resiexg 5049 dminss 5142 imainss 5143 ssrnres 5170 elxp4 5215 elxp5 5216 cnvresima 5217 coundi 5229 resco 5232 imaco 5233 coiun 5237 coi1 5243 coass 5246 xpcom 5274 dffun2 5327 fncnv 5386 imadiflem 5399 imadif 5400 imainlem 5401 mptun 5454 fcnvres 5508 dff1o2 5576 dff1o3 5577 ffoss 5603 f11o 5604 brprcneu 5619 fvun2 5700 eqfnfv3 5733 respreima 5762 f1ompt 5785 fsn 5806 abrexco 5882 imaiun 5883 f1mpt 5894 dff1o6 5899 oprabid 6032 dfoprab2 6050 oprab4 6074 mpomptx 6094 opabex3d 6264 opabex3 6265 abexssex 6268 dfopab2 6333 dfoprab3s 6334 1stconst 6365 2ndconst 6366 xporderlem 6375 spc2ed 6377 f1od2 6379 brtpos2 6395 tpostpos 6408 tposmpo 6425 oviec 6786 mapsncnv 6840 dfixp 6845 domen 6898 mapsnen 6962 xpsnen 6976 xpcomco 6981 xpassen 6985 ltexpi 7520 dfmq0qs 7612 dfplq0qs 7613 enq0enq 7614 enq0ref 7616 enq0tr 7617 nqnq0pi 7621 prnmaxl 7671 prnminu 7672 suplocexprlemloc 7904 addsrpr 7928 mulsrpr 7929 suplocsrlemb 7989 addcnsr 8017 mulcnsr 8018 ltresr 8022 addvalex 8027 axprecex 8063 elnnz 9452 fnn0ind 9559 rexuz2 9772 qreccl 9833 rexrp 9868 elixx3g 10093 elfz2 10207 elfzuzb 10211 fznn 10281 elfz2nn0 10304 fznn0 10305 4fvwrd4 10332 elfzo2 10342 fzind2 10440 cvg1nlemres 11491 fsum2dlemstep 11940 modfsummod 11964 fprodseq 12089 divalgb 12431 bezoutlemmain 12514 isprm2 12634 oddpwdc 12691 prdsex 13297 prdsval 13301 prdsbaslemss 13302 xpscf 13375 issubg3 13724 releqgg 13752 eqgex 13753 imasabl 13868 dfrhm2 14112 ntreq0 14800 cnnei 14900 txlm 14947 blres 15102 isms2 15122 dedekindicclemicc 15300 limcrcl 15326 lgsquadlem1 15750 lgsquadlem2 15751 bdcriota 16204 bj-peano4 16276 alsconv 16407 |
| Copyright terms: Public domain | W3C validator |