![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anbi1i | GIF version |
Description: Introduce a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
Ref | Expression |
---|---|
bi.aa | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
anbi1i | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi.aa | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
3 | 2 | pm5.32ri 455 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anbi2ci 459 anbi12i 460 bianassc 470 an12 561 anandi 590 pm5.53 803 pm5.75 964 3ancoma 987 3ioran 995 an6 1332 19.26-3an 1494 19.28h 1573 19.28 1574 eeeanv 1949 sb3an 1974 moanim 2116 nfrexdya 2530 r19.26-3 2624 r19.41 2649 rexcomf 2656 3reeanv 2665 cbvreu 2724 ceqsex3v 2803 rexab 2923 rexrab 2924 rmo4 2954 rmo3f 2958 reuind 2966 sbc3an 3048 rmo3 3078 ssrab 3258 rexun 3340 elin3 3351 inass 3370 unssdif 3395 indifdir 3416 difin2 3422 inrab2 3433 rabun2 3439 reuun2 3443 undif4 3510 rexdifpr 3647 rexsns 3658 rexdifsn 3751 2ralunsn 3825 iuncom4 3920 iunxiun 3995 inuni 4185 unidif0 4197 bnd2 4203 otth2 4271 copsexg 4274 copsex4g 4277 opeqsn 4282 opelopabsbALT 4290 elpwpwel 4507 suc11g 4590 rabxp 4697 opeliunxp 4715 xpundir 4717 xpiundi 4718 xpiundir 4719 brinxp2 4727 rexiunxp 4805 brres 4949 brresg 4951 dmres 4964 resiexg 4988 dminss 5081 imainss 5082 ssrnres 5109 elxp4 5154 elxp5 5155 cnvresima 5156 coundi 5168 resco 5171 imaco 5172 coiun 5176 coi1 5182 coass 5185 xpcom 5213 dffun2 5265 fncnv 5321 imadiflem 5334 imadif 5335 imainlem 5336 mptun 5386 fcnvres 5438 dff1o2 5506 dff1o3 5507 ffoss 5533 f11o 5534 brprcneu 5548 fvun2 5625 eqfnfv3 5658 respreima 5687 f1ompt 5710 fsn 5731 abrexco 5803 imaiun 5804 f1mpt 5815 dff1o6 5820 oprabid 5951 dfoprab2 5966 oprab4 5990 mpomptx 6010 opabex3d 6175 opabex3 6176 abexssex 6179 dfopab2 6244 dfoprab3s 6245 1stconst 6276 2ndconst 6277 xporderlem 6286 spc2ed 6288 f1od2 6290 brtpos2 6306 tpostpos 6319 tposmpo 6336 oviec 6697 mapsncnv 6751 dfixp 6756 domen 6807 mapsnen 6867 xpsnen 6877 xpcomco 6882 xpassen 6886 ltexpi 7399 dfmq0qs 7491 dfplq0qs 7492 enq0enq 7493 enq0ref 7495 enq0tr 7496 nqnq0pi 7500 prnmaxl 7550 prnminu 7551 suplocexprlemloc 7783 addsrpr 7807 mulsrpr 7808 suplocsrlemb 7868 addcnsr 7896 mulcnsr 7897 ltresr 7901 addvalex 7906 axprecex 7942 elnnz 9330 fnn0ind 9436 rexuz2 9649 qreccl 9710 rexrp 9745 elixx3g 9970 elfz2 10084 elfzuzb 10088 fznn 10158 elfz2nn0 10181 fznn0 10182 4fvwrd4 10209 elfzo2 10219 fzind2 10309 cvg1nlemres 11132 fsum2dlemstep 11580 modfsummod 11604 fprodseq 11729 divalgb 12069 bezoutlemmain 12138 isprm2 12258 oddpwdc 12315 prdsex 12883 xpscf 12933 issubg3 13265 releqgg 13293 eqgex 13294 imasabl 13409 dfrhm2 13653 ntreq0 14311 cnnei 14411 txlm 14458 blres 14613 isms2 14633 dedekindicclemicc 14811 limcrcl 14837 lgsquadlem1 15234 lgsquadlem2 15235 bdcriota 15445 bj-peano4 15517 alsconv 15640 |
Copyright terms: Public domain | W3C validator |