| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anbi1i | GIF version | ||
| Description: Introduce a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| bi.aa | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| anbi1i | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi.aa | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | pm5.32ri 455 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anbi2ci 459 anbi12i 460 bianassc 470 an12 561 anandi 590 pm5.53 803 pm5.75 964 3ancoma 987 3ioran 995 an6 1333 19.26-3an 1505 19.28h 1584 19.28 1585 eeeanv 1960 sb3an 1985 moanim 2127 nfrexdya 2541 r19.26-3 2635 r19.41 2660 rexcomf 2667 3reeanv 2676 cbvreu 2735 ceqsex3v 2814 rexab 2934 rexrab 2935 rmo4 2965 rmo3f 2969 reuind 2977 sbc3an 3059 rmo3 3089 ssrab 3270 rexun 3352 elin3 3363 inass 3382 unssdif 3407 indifdir 3428 difin2 3434 inrab2 3445 rabun2 3451 reuun2 3455 undif4 3522 rexdifpr 3660 rexsns 3671 rexdifsn 3764 2ralunsn 3838 iuncom4 3933 iunxiun 4008 inuni 4198 unidif0 4210 bnd2 4216 otth2 4284 copsexg 4287 copsex4g 4290 opeqsn 4295 opelopabsbALT 4303 elpwpwel 4520 suc11g 4603 rabxp 4710 opeliunxp 4728 xpundir 4730 xpiundi 4731 xpiundir 4732 brinxp2 4740 rexiunxp 4818 brres 4962 brresg 4964 dmres 4977 resiexg 5001 dminss 5094 imainss 5095 ssrnres 5122 elxp4 5167 elxp5 5168 cnvresima 5169 coundi 5181 resco 5184 imaco 5185 coiun 5189 coi1 5195 coass 5198 xpcom 5226 dffun2 5278 fncnv 5334 imadiflem 5347 imadif 5348 imainlem 5349 mptun 5401 fcnvres 5453 dff1o2 5521 dff1o3 5522 ffoss 5548 f11o 5549 brprcneu 5563 fvun2 5640 eqfnfv3 5673 respreima 5702 f1ompt 5725 fsn 5746 abrexco 5818 imaiun 5819 f1mpt 5830 dff1o6 5835 oprabid 5966 dfoprab2 5982 oprab4 6006 mpomptx 6026 opabex3d 6196 opabex3 6197 abexssex 6200 dfopab2 6265 dfoprab3s 6266 1stconst 6297 2ndconst 6298 xporderlem 6307 spc2ed 6309 f1od2 6311 brtpos2 6327 tpostpos 6340 tposmpo 6357 oviec 6718 mapsncnv 6772 dfixp 6777 domen 6828 mapsnen 6888 xpsnen 6898 xpcomco 6903 xpassen 6907 ltexpi 7432 dfmq0qs 7524 dfplq0qs 7525 enq0enq 7526 enq0ref 7528 enq0tr 7529 nqnq0pi 7533 prnmaxl 7583 prnminu 7584 suplocexprlemloc 7816 addsrpr 7840 mulsrpr 7841 suplocsrlemb 7901 addcnsr 7929 mulcnsr 7930 ltresr 7934 addvalex 7939 axprecex 7975 elnnz 9364 fnn0ind 9471 rexuz2 9684 qreccl 9745 rexrp 9780 elixx3g 10005 elfz2 10119 elfzuzb 10123 fznn 10193 elfz2nn0 10216 fznn0 10217 4fvwrd4 10244 elfzo2 10254 fzind2 10349 cvg1nlemres 11215 fsum2dlemstep 11664 modfsummod 11688 fprodseq 11813 divalgb 12155 bezoutlemmain 12238 isprm2 12358 oddpwdc 12415 prdsex 13019 prdsval 13023 prdsbaslemss 13024 xpscf 13097 issubg3 13446 releqgg 13474 eqgex 13475 imasabl 13590 dfrhm2 13834 ntreq0 14522 cnnei 14622 txlm 14669 blres 14824 isms2 14844 dedekindicclemicc 15022 limcrcl 15048 lgsquadlem1 15472 lgsquadlem2 15473 bdcriota 15683 bj-peano4 15755 alsconv 15883 |
| Copyright terms: Public domain | W3C validator |