![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anbi1i | GIF version |
Description: Introduce a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
Ref | Expression |
---|---|
bi.aa | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
anbi1i | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi.aa | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
3 | 2 | pm5.32ri 455 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anbi2ci 459 anbi12i 460 bianassc 470 an12 561 anandi 590 pm5.53 802 pm5.75 962 3ancoma 985 3ioran 993 an6 1321 19.26-3an 1483 19.28h 1562 19.28 1563 eeeanv 1933 sb3an 1958 moanim 2100 nfrexdya 2513 r19.26-3 2607 r19.41 2632 rexcomf 2639 3reeanv 2648 cbvreu 2703 ceqsex3v 2781 rexab 2901 rexrab 2902 rmo4 2932 rmo3f 2936 reuind 2944 sbc3an 3026 rmo3 3056 ssrab 3235 rexun 3317 elin3 3328 inass 3347 unssdif 3372 indifdir 3393 difin2 3399 inrab2 3410 rabun2 3416 reuun2 3420 undif4 3487 rexdifpr 3622 rexsns 3633 rexdifsn 3726 2ralunsn 3800 iuncom4 3895 iunxiun 3970 inuni 4157 unidif0 4169 bnd2 4175 otth2 4243 copsexg 4246 copsex4g 4249 opeqsn 4254 opelopabsbALT 4261 elpwpwel 4477 suc11g 4558 rabxp 4665 opeliunxp 4683 xpundir 4685 xpiundi 4686 xpiundir 4687 brinxp2 4695 rexiunxp 4771 brres 4915 brresg 4917 dmres 4930 resiexg 4954 dminss 5045 imainss 5046 ssrnres 5073 elxp4 5118 elxp5 5119 cnvresima 5120 coundi 5132 resco 5135 imaco 5136 coiun 5140 coi1 5146 coass 5149 xpcom 5177 dffun2 5228 fncnv 5284 imadiflem 5297 imadif 5298 imainlem 5299 mptun 5349 fcnvres 5401 dff1o2 5468 dff1o3 5469 ffoss 5495 f11o 5496 brprcneu 5510 fvun2 5585 eqfnfv3 5617 respreima 5646 f1ompt 5669 fsn 5690 abrexco 5762 imaiun 5763 f1mpt 5774 dff1o6 5779 oprabid 5909 dfoprab2 5924 oprab4 5948 mpomptx 5968 opabex3d 6124 opabex3 6125 abexssex 6128 dfopab2 6192 dfoprab3s 6193 1stconst 6224 2ndconst 6225 xporderlem 6234 spc2ed 6236 f1od2 6238 brtpos2 6254 tpostpos 6267 tposmpo 6284 oviec 6643 mapsncnv 6697 dfixp 6702 domen 6753 mapsnen 6813 xpsnen 6823 xpcomco 6828 xpassen 6832 ltexpi 7338 dfmq0qs 7430 dfplq0qs 7431 enq0enq 7432 enq0ref 7434 enq0tr 7435 nqnq0pi 7439 prnmaxl 7489 prnminu 7490 suplocexprlemloc 7722 addsrpr 7746 mulsrpr 7747 suplocsrlemb 7807 addcnsr 7835 mulcnsr 7836 ltresr 7840 addvalex 7845 axprecex 7881 elnnz 9265 fnn0ind 9371 rexuz2 9583 qreccl 9644 rexrp 9678 elixx3g 9903 elfz2 10017 elfzuzb 10021 fznn 10091 elfz2nn0 10114 fznn0 10115 4fvwrd4 10142 elfzo2 10152 fzind2 10241 cvg1nlemres 10996 fsum2dlemstep 11444 modfsummod 11468 fprodseq 11593 divalgb 11932 bezoutlemmain 12001 isprm2 12119 oddpwdc 12176 prdsex 12723 xpscf 12771 issubg3 13057 releqgg 13085 ntreq0 13671 cnnei 13771 txlm 13818 blres 13973 isms2 13993 dedekindicclemicc 14149 limcrcl 14166 bdcriota 14674 bj-peano4 14746 alsconv 14867 |
Copyright terms: Public domain | W3C validator |