| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anbi1i | GIF version | ||
| Description: Introduce a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| bi.aa | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| anbi1i | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi.aa | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | pm5.32ri 455 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anbi2ci 459 anbi12i 460 bianassc 470 an12 561 anandi 590 pm5.53 803 pm5.75 964 3ancoma 987 3ioran 995 an6 1332 19.26-3an 1497 19.28h 1576 19.28 1577 eeeanv 1952 sb3an 1977 moanim 2119 nfrexdya 2533 r19.26-3 2627 r19.41 2652 rexcomf 2659 3reeanv 2668 cbvreu 2727 ceqsex3v 2806 rexab 2926 rexrab 2927 rmo4 2957 rmo3f 2961 reuind 2969 sbc3an 3051 rmo3 3081 ssrab 3262 rexun 3344 elin3 3355 inass 3374 unssdif 3399 indifdir 3420 difin2 3426 inrab2 3437 rabun2 3443 reuun2 3447 undif4 3514 rexdifpr 3651 rexsns 3662 rexdifsn 3755 2ralunsn 3829 iuncom4 3924 iunxiun 3999 inuni 4189 unidif0 4201 bnd2 4207 otth2 4275 copsexg 4278 copsex4g 4281 opeqsn 4286 opelopabsbALT 4294 elpwpwel 4511 suc11g 4594 rabxp 4701 opeliunxp 4719 xpundir 4721 xpiundi 4722 xpiundir 4723 brinxp2 4731 rexiunxp 4809 brres 4953 brresg 4955 dmres 4968 resiexg 4992 dminss 5085 imainss 5086 ssrnres 5113 elxp4 5158 elxp5 5159 cnvresima 5160 coundi 5172 resco 5175 imaco 5176 coiun 5180 coi1 5186 coass 5189 xpcom 5217 dffun2 5269 fncnv 5325 imadiflem 5338 imadif 5339 imainlem 5340 mptun 5392 fcnvres 5444 dff1o2 5512 dff1o3 5513 ffoss 5539 f11o 5540 brprcneu 5554 fvun2 5631 eqfnfv3 5664 respreima 5693 f1ompt 5716 fsn 5737 abrexco 5809 imaiun 5810 f1mpt 5821 dff1o6 5826 oprabid 5957 dfoprab2 5973 oprab4 5997 mpomptx 6017 opabex3d 6187 opabex3 6188 abexssex 6191 dfopab2 6256 dfoprab3s 6257 1stconst 6288 2ndconst 6289 xporderlem 6298 spc2ed 6300 f1od2 6302 brtpos2 6318 tpostpos 6331 tposmpo 6348 oviec 6709 mapsncnv 6763 dfixp 6768 domen 6819 mapsnen 6879 xpsnen 6889 xpcomco 6894 xpassen 6898 ltexpi 7421 dfmq0qs 7513 dfplq0qs 7514 enq0enq 7515 enq0ref 7517 enq0tr 7518 nqnq0pi 7522 prnmaxl 7572 prnminu 7573 suplocexprlemloc 7805 addsrpr 7829 mulsrpr 7830 suplocsrlemb 7890 addcnsr 7918 mulcnsr 7919 ltresr 7923 addvalex 7928 axprecex 7964 elnnz 9353 fnn0ind 9459 rexuz2 9672 qreccl 9733 rexrp 9768 elixx3g 9993 elfz2 10107 elfzuzb 10111 fznn 10181 elfz2nn0 10204 fznn0 10205 4fvwrd4 10232 elfzo2 10242 fzind2 10332 cvg1nlemres 11167 fsum2dlemstep 11616 modfsummod 11640 fprodseq 11765 divalgb 12107 bezoutlemmain 12190 isprm2 12310 oddpwdc 12367 prdsex 12971 prdsval 12975 prdsbaslemss 12976 xpscf 13049 issubg3 13398 releqgg 13426 eqgex 13427 imasabl 13542 dfrhm2 13786 ntreq0 14452 cnnei 14552 txlm 14599 blres 14754 isms2 14774 dedekindicclemicc 14952 limcrcl 14978 lgsquadlem1 15402 lgsquadlem2 15403 bdcriota 15613 bj-peano4 15685 alsconv 15811 |
| Copyright terms: Public domain | W3C validator |