Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anbi1i | GIF version |
Description: Introduce a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
Ref | Expression |
---|---|
bi.aa | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
anbi1i | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi.aa | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
3 | 2 | pm5.32ri 451 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: anbi2ci 455 anbi12i 456 an12 551 anandi 580 pm5.53 792 pm5.75 952 3ancoma 975 3ioran 983 an6 1311 19.26-3an 1471 19.28h 1550 19.28 1551 eeeanv 1921 sb3an 1946 moanim 2088 nfrexdya 2502 r19.26-3 2596 r19.41 2621 rexcomf 2628 3reeanv 2636 cbvreu 2690 ceqsex3v 2768 rexab 2888 rexrab 2889 rmo4 2919 rmo3f 2923 reuind 2931 sbc3an 3012 rmo3 3042 ssrab 3220 rexun 3302 elin3 3313 inass 3332 unssdif 3357 indifdir 3378 difin2 3384 inrab2 3395 rabun2 3401 reuun2 3405 undif4 3471 rexdifpr 3604 rexsns 3615 rexdifsn 3708 2ralunsn 3778 iuncom4 3873 iunxiun 3947 inuni 4134 unidif0 4146 bnd2 4152 otth2 4219 copsexg 4222 copsex4g 4225 opeqsn 4230 opelopabsbALT 4237 elpwpwel 4453 suc11g 4534 rabxp 4641 opeliunxp 4659 xpundir 4661 xpiundi 4662 xpiundir 4663 brinxp2 4671 rexiunxp 4746 brres 4890 brresg 4892 dmres 4905 resiexg 4929 dminss 5018 imainss 5019 ssrnres 5046 elxp4 5091 elxp5 5092 cnvresima 5093 coundi 5105 resco 5108 imaco 5109 coiun 5113 coi1 5119 coass 5122 xpcom 5150 dffun2 5198 fncnv 5254 imadiflem 5267 imadif 5268 imainlem 5269 mptun 5319 fcnvres 5371 dff1o2 5437 dff1o3 5438 ffoss 5464 f11o 5465 brprcneu 5479 fvun2 5553 eqfnfv3 5585 respreima 5613 f1ompt 5636 fsn 5657 abrexco 5727 imaiun 5728 f1mpt 5739 dff1o6 5744 oprabid 5874 dfoprab2 5889 oprab4 5913 mpomptx 5933 opabex3d 6089 opabex3 6090 abexssex 6093 dfopab2 6157 dfoprab3s 6158 1stconst 6189 2ndconst 6190 xporderlem 6199 spc2ed 6201 f1od2 6203 brtpos2 6219 tpostpos 6232 tposmpo 6249 oviec 6607 mapsncnv 6661 dfixp 6666 domen 6717 mapsnen 6777 xpsnen 6787 xpcomco 6792 xpassen 6796 ltexpi 7278 dfmq0qs 7370 dfplq0qs 7371 enq0enq 7372 enq0ref 7374 enq0tr 7375 nqnq0pi 7379 prnmaxl 7429 prnminu 7430 suplocexprlemloc 7662 addsrpr 7686 mulsrpr 7687 suplocsrlemb 7747 addcnsr 7775 mulcnsr 7776 ltresr 7780 addvalex 7785 axprecex 7821 elnnz 9201 fnn0ind 9307 rexuz2 9519 qreccl 9580 rexrp 9612 elixx3g 9837 elfz2 9951 elfzuzb 9954 fznn 10024 elfz2nn0 10047 fznn0 10048 4fvwrd4 10075 elfzo2 10085 fzind2 10174 cvg1nlemres 10927 fsum2dlemstep 11375 modfsummod 11399 fprodseq 11524 divalgb 11862 bezoutlemmain 11931 isprm2 12049 oddpwdc 12106 ntreq0 12772 cnnei 12872 txlm 12919 blres 13074 isms2 13094 dedekindicclemicc 13250 limcrcl 13267 bdcriota 13765 bj-peano4 13837 alsconv 13956 |
Copyright terms: Public domain | W3C validator |