| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anbi1i | GIF version | ||
| Description: Introduce a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| bi.aa | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| anbi1i | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi.aa | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | pm5.32ri 455 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anbi2ci 459 anbi12i 460 bianassc 470 an12 561 anandi 590 pm5.53 803 pm5.75 964 3ancoma 987 3ioran 995 an6 1332 19.26-3an 1497 19.28h 1576 19.28 1577 eeeanv 1952 sb3an 1977 moanim 2119 nfrexdya 2533 r19.26-3 2627 r19.41 2652 rexcomf 2659 3reeanv 2668 cbvreu 2727 ceqsex3v 2806 rexab 2926 rexrab 2927 rmo4 2957 rmo3f 2961 reuind 2969 sbc3an 3051 rmo3 3081 ssrab 3262 rexun 3344 elin3 3355 inass 3374 unssdif 3399 indifdir 3420 difin2 3426 inrab2 3437 rabun2 3443 reuun2 3447 undif4 3514 rexdifpr 3651 rexsns 3662 rexdifsn 3755 2ralunsn 3829 iuncom4 3924 iunxiun 3999 inuni 4189 unidif0 4201 bnd2 4207 otth2 4275 copsexg 4278 copsex4g 4281 opeqsn 4286 opelopabsbALT 4294 elpwpwel 4511 suc11g 4594 rabxp 4701 opeliunxp 4719 xpundir 4721 xpiundi 4722 xpiundir 4723 brinxp2 4731 rexiunxp 4809 brres 4953 brresg 4955 dmres 4968 resiexg 4992 dminss 5085 imainss 5086 ssrnres 5113 elxp4 5158 elxp5 5159 cnvresima 5160 coundi 5172 resco 5175 imaco 5176 coiun 5180 coi1 5186 coass 5189 xpcom 5217 dffun2 5269 fncnv 5325 imadiflem 5338 imadif 5339 imainlem 5340 mptun 5392 fcnvres 5444 dff1o2 5512 dff1o3 5513 ffoss 5539 f11o 5540 brprcneu 5554 fvun2 5631 eqfnfv3 5664 respreima 5693 f1ompt 5716 fsn 5737 abrexco 5809 imaiun 5810 f1mpt 5821 dff1o6 5826 oprabid 5957 dfoprab2 5973 oprab4 5997 mpomptx 6017 opabex3d 6187 opabex3 6188 abexssex 6191 dfopab2 6256 dfoprab3s 6257 1stconst 6288 2ndconst 6289 xporderlem 6298 spc2ed 6300 f1od2 6302 brtpos2 6318 tpostpos 6331 tposmpo 6348 oviec 6709 mapsncnv 6763 dfixp 6768 domen 6819 mapsnen 6879 xpsnen 6889 xpcomco 6894 xpassen 6898 ltexpi 7423 dfmq0qs 7515 dfplq0qs 7516 enq0enq 7517 enq0ref 7519 enq0tr 7520 nqnq0pi 7524 prnmaxl 7574 prnminu 7575 suplocexprlemloc 7807 addsrpr 7831 mulsrpr 7832 suplocsrlemb 7892 addcnsr 7920 mulcnsr 7921 ltresr 7925 addvalex 7930 axprecex 7966 elnnz 9355 fnn0ind 9461 rexuz2 9674 qreccl 9735 rexrp 9770 elixx3g 9995 elfz2 10109 elfzuzb 10113 fznn 10183 elfz2nn0 10206 fznn0 10207 4fvwrd4 10234 elfzo2 10244 fzind2 10334 cvg1nlemres 11169 fsum2dlemstep 11618 modfsummod 11642 fprodseq 11767 divalgb 12109 bezoutlemmain 12192 isprm2 12312 oddpwdc 12369 prdsex 12973 prdsval 12977 prdsbaslemss 12978 xpscf 13051 issubg3 13400 releqgg 13428 eqgex 13429 imasabl 13544 dfrhm2 13788 ntreq0 14476 cnnei 14576 txlm 14623 blres 14778 isms2 14798 dedekindicclemicc 14976 limcrcl 15002 lgsquadlem1 15426 lgsquadlem2 15427 bdcriota 15637 bj-peano4 15709 alsconv 15837 |
| Copyright terms: Public domain | W3C validator |