| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anbi1i | GIF version | ||
| Description: Introduce a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| bi.aa | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| anbi1i | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi.aa | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | pm5.32ri 455 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anbi2ci 459 anbi12i 460 bianassc 470 an12 561 anandi 590 pm5.53 803 pm5.75 964 3ancoma 987 3ioran 995 an6 1333 19.26-3an 1505 19.28h 1584 19.28 1585 eeeanv 1960 sb3an 1985 moanim 2127 nfrexdya 2541 r19.26-3 2635 r19.41 2660 rexcomf 2667 3reeanv 2676 cbvreu 2735 ceqsex3v 2814 rexab 2934 rexrab 2935 rmo4 2965 rmo3f 2969 reuind 2977 sbc3an 3059 rmo3 3089 ssrab 3270 rexun 3352 elin3 3363 inass 3382 unssdif 3407 indifdir 3428 difin2 3434 inrab2 3445 rabun2 3451 reuun2 3455 undif4 3522 rexdifpr 3660 rexsns 3671 rexdifsn 3764 2ralunsn 3838 iuncom4 3933 iunxiun 4008 inuni 4198 unidif0 4210 bnd2 4216 otth2 4284 copsexg 4287 copsex4g 4290 opeqsn 4296 opelopabsbALT 4304 elpwpwel 4521 suc11g 4604 rabxp 4711 opeliunxp 4729 xpundir 4731 xpiundi 4732 xpiundir 4733 brinxp2 4741 rexiunxp 4819 brres 4964 brresg 4966 dmres 4979 resiexg 5003 dminss 5096 imainss 5097 ssrnres 5124 elxp4 5169 elxp5 5170 cnvresima 5171 coundi 5183 resco 5186 imaco 5187 coiun 5191 coi1 5197 coass 5200 xpcom 5228 dffun2 5280 fncnv 5339 imadiflem 5352 imadif 5353 imainlem 5354 mptun 5406 fcnvres 5458 dff1o2 5526 dff1o3 5527 ffoss 5553 f11o 5554 brprcneu 5568 fvun2 5645 eqfnfv3 5678 respreima 5707 f1ompt 5730 fsn 5751 abrexco 5827 imaiun 5828 f1mpt 5839 dff1o6 5844 oprabid 5975 dfoprab2 5991 oprab4 6015 mpomptx 6035 opabex3d 6205 opabex3 6206 abexssex 6209 dfopab2 6274 dfoprab3s 6275 1stconst 6306 2ndconst 6307 xporderlem 6316 spc2ed 6318 f1od2 6320 brtpos2 6336 tpostpos 6349 tposmpo 6366 oviec 6727 mapsncnv 6781 dfixp 6786 domen 6839 mapsnen 6902 xpsnen 6915 xpcomco 6920 xpassen 6924 ltexpi 7449 dfmq0qs 7541 dfplq0qs 7542 enq0enq 7543 enq0ref 7545 enq0tr 7546 nqnq0pi 7550 prnmaxl 7600 prnminu 7601 suplocexprlemloc 7833 addsrpr 7857 mulsrpr 7858 suplocsrlemb 7918 addcnsr 7946 mulcnsr 7947 ltresr 7951 addvalex 7956 axprecex 7992 elnnz 9381 fnn0ind 9488 rexuz2 9701 qreccl 9762 rexrp 9797 elixx3g 10022 elfz2 10136 elfzuzb 10140 fznn 10210 elfz2nn0 10233 fznn0 10234 4fvwrd4 10261 elfzo2 10271 fzind2 10366 cvg1nlemres 11238 fsum2dlemstep 11687 modfsummod 11711 fprodseq 11836 divalgb 12178 bezoutlemmain 12261 isprm2 12381 oddpwdc 12438 prdsex 13043 prdsval 13047 prdsbaslemss 13048 xpscf 13121 issubg3 13470 releqgg 13498 eqgex 13499 imasabl 13614 dfrhm2 13858 ntreq0 14546 cnnei 14646 txlm 14693 blres 14848 isms2 14868 dedekindicclemicc 15046 limcrcl 15072 lgsquadlem1 15496 lgsquadlem2 15497 bdcriota 15752 bj-peano4 15824 alsconv 15952 |
| Copyright terms: Public domain | W3C validator |