| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > anbi1i | GIF version | ||
| Description: Introduce a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) | 
| Ref | Expression | 
|---|---|
| bi.aa | ⊢ (𝜑 ↔ 𝜓) | 
| Ref | Expression | 
|---|---|
| anbi1i | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bi.aa | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) | 
| 3 | 2 | pm5.32ri 455 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: anbi2ci 459 anbi12i 460 bianassc 470 an12 561 anandi 590 pm5.53 803 pm5.75 964 3ancoma 987 3ioran 995 an6 1332 19.26-3an 1497 19.28h 1576 19.28 1577 eeeanv 1952 sb3an 1977 moanim 2119 nfrexdya 2533 r19.26-3 2627 r19.41 2652 rexcomf 2659 3reeanv 2668 cbvreu 2727 ceqsex3v 2806 rexab 2926 rexrab 2927 rmo4 2957 rmo3f 2961 reuind 2969 sbc3an 3051 rmo3 3081 ssrab 3261 rexun 3343 elin3 3354 inass 3373 unssdif 3398 indifdir 3419 difin2 3425 inrab2 3436 rabun2 3442 reuun2 3446 undif4 3513 rexdifpr 3650 rexsns 3661 rexdifsn 3754 2ralunsn 3828 iuncom4 3923 iunxiun 3998 inuni 4188 unidif0 4200 bnd2 4206 otth2 4274 copsexg 4277 copsex4g 4280 opeqsn 4285 opelopabsbALT 4293 elpwpwel 4510 suc11g 4593 rabxp 4700 opeliunxp 4718 xpundir 4720 xpiundi 4721 xpiundir 4722 brinxp2 4730 rexiunxp 4808 brres 4952 brresg 4954 dmres 4967 resiexg 4991 dminss 5084 imainss 5085 ssrnres 5112 elxp4 5157 elxp5 5158 cnvresima 5159 coundi 5171 resco 5174 imaco 5175 coiun 5179 coi1 5185 coass 5188 xpcom 5216 dffun2 5268 fncnv 5324 imadiflem 5337 imadif 5338 imainlem 5339 mptun 5389 fcnvres 5441 dff1o2 5509 dff1o3 5510 ffoss 5536 f11o 5537 brprcneu 5551 fvun2 5628 eqfnfv3 5661 respreima 5690 f1ompt 5713 fsn 5734 abrexco 5806 imaiun 5807 f1mpt 5818 dff1o6 5823 oprabid 5954 dfoprab2 5969 oprab4 5993 mpomptx 6013 opabex3d 6178 opabex3 6179 abexssex 6182 dfopab2 6247 dfoprab3s 6248 1stconst 6279 2ndconst 6280 xporderlem 6289 spc2ed 6291 f1od2 6293 brtpos2 6309 tpostpos 6322 tposmpo 6339 oviec 6700 mapsncnv 6754 dfixp 6759 domen 6810 mapsnen 6870 xpsnen 6880 xpcomco 6885 xpassen 6889 ltexpi 7404 dfmq0qs 7496 dfplq0qs 7497 enq0enq 7498 enq0ref 7500 enq0tr 7501 nqnq0pi 7505 prnmaxl 7555 prnminu 7556 suplocexprlemloc 7788 addsrpr 7812 mulsrpr 7813 suplocsrlemb 7873 addcnsr 7901 mulcnsr 7902 ltresr 7906 addvalex 7911 axprecex 7947 elnnz 9336 fnn0ind 9442 rexuz2 9655 qreccl 9716 rexrp 9751 elixx3g 9976 elfz2 10090 elfzuzb 10094 fznn 10164 elfz2nn0 10187 fznn0 10188 4fvwrd4 10215 elfzo2 10225 fzind2 10315 cvg1nlemres 11150 fsum2dlemstep 11599 modfsummod 11623 fprodseq 11748 divalgb 12090 bezoutlemmain 12165 isprm2 12285 oddpwdc 12342 prdsex 12940 xpscf 12990 issubg3 13322 releqgg 13350 eqgex 13351 imasabl 13466 dfrhm2 13710 ntreq0 14368 cnnei 14468 txlm 14515 blres 14670 isms2 14690 dedekindicclemicc 14868 limcrcl 14894 lgsquadlem1 15318 lgsquadlem2 15319 bdcriota 15529 bj-peano4 15601 alsconv 15724 | 
| Copyright terms: Public domain | W3C validator |