| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anbi1i | GIF version | ||
| Description: Introduce a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| bi.aa | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| anbi1i | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi.aa | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | pm5.32ri 455 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anbi2ci 459 anbi12i 460 bianassc 470 an12 561 anandi 590 pm5.53 804 pm5.75 965 3ancoma 988 3ioran 996 an6 1334 19.26-3an 1507 19.28h 1586 19.28 1587 eeeanv 1962 sb3an 1987 moanim 2129 nfrexdya 2543 r19.26-3 2637 r19.41 2662 rexcomf 2669 3reeanv 2678 cbvreu 2737 ceqsex3v 2817 rexab 2939 rexrab 2940 rmo4 2970 rmo3f 2974 reuind 2982 sbc3an 3064 rmo3 3094 ssrab 3275 rexun 3357 elin3 3368 inass 3387 unssdif 3412 indifdir 3433 difin2 3439 inrab2 3450 rabun2 3456 reuun2 3460 undif4 3527 rexdifpr 3666 rexsns 3677 rexdifsn 3771 2ralunsn 3845 iuncom4 3940 iunxiun 4015 inuni 4207 unidif0 4219 bnd2 4225 otth2 4293 copsexg 4296 copsex4g 4299 opeqsn 4305 opelopabsbALT 4313 elpwpwel 4530 suc11g 4613 rabxp 4720 opeliunxp 4738 xpundir 4740 xpiundi 4741 xpiundir 4742 brinxp2 4750 rexiunxp 4828 brres 4974 brresg 4976 dmres 4989 resiexg 5013 dminss 5106 imainss 5107 ssrnres 5134 elxp4 5179 elxp5 5180 cnvresima 5181 coundi 5193 resco 5196 imaco 5197 coiun 5201 coi1 5207 coass 5210 xpcom 5238 dffun2 5290 fncnv 5349 imadiflem 5362 imadif 5363 imainlem 5364 mptun 5417 fcnvres 5471 dff1o2 5539 dff1o3 5540 ffoss 5566 f11o 5567 brprcneu 5582 fvun2 5659 eqfnfv3 5692 respreima 5721 f1ompt 5744 fsn 5765 abrexco 5841 imaiun 5842 f1mpt 5853 dff1o6 5858 oprabid 5989 dfoprab2 6005 oprab4 6029 mpomptx 6049 opabex3d 6219 opabex3 6220 abexssex 6223 dfopab2 6288 dfoprab3s 6289 1stconst 6320 2ndconst 6321 xporderlem 6330 spc2ed 6332 f1od2 6334 brtpos2 6350 tpostpos 6363 tposmpo 6380 oviec 6741 mapsncnv 6795 dfixp 6800 domen 6853 mapsnen 6917 xpsnen 6931 xpcomco 6936 xpassen 6940 ltexpi 7470 dfmq0qs 7562 dfplq0qs 7563 enq0enq 7564 enq0ref 7566 enq0tr 7567 nqnq0pi 7571 prnmaxl 7621 prnminu 7622 suplocexprlemloc 7854 addsrpr 7878 mulsrpr 7879 suplocsrlemb 7939 addcnsr 7967 mulcnsr 7968 ltresr 7972 addvalex 7977 axprecex 8013 elnnz 9402 fnn0ind 9509 rexuz2 9722 qreccl 9783 rexrp 9818 elixx3g 10043 elfz2 10157 elfzuzb 10161 fznn 10231 elfz2nn0 10254 fznn0 10255 4fvwrd4 10282 elfzo2 10292 fzind2 10390 cvg1nlemres 11371 fsum2dlemstep 11820 modfsummod 11844 fprodseq 11969 divalgb 12311 bezoutlemmain 12394 isprm2 12514 oddpwdc 12571 prdsex 13176 prdsval 13180 prdsbaslemss 13181 xpscf 13254 issubg3 13603 releqgg 13631 eqgex 13632 imasabl 13747 dfrhm2 13991 ntreq0 14679 cnnei 14779 txlm 14826 blres 14981 isms2 15001 dedekindicclemicc 15179 limcrcl 15205 lgsquadlem1 15629 lgsquadlem2 15630 bdcriota 15957 bj-peano4 16029 alsconv 16160 |
| Copyright terms: Public domain | W3C validator |