![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anbi1i | GIF version |
Description: Introduce a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
Ref | Expression |
---|---|
bi.aa | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
anbi1i | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi.aa | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
3 | 2 | pm5.32ri 446 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: anbi2ci 450 anbi12i 451 an12 531 anandi 560 pm5.53 757 pm5.75 914 3ancoma 937 3ioran 945 an6 1267 19.26-3an 1427 19.28h 1509 19.28 1510 eeeanv 1868 sb3an 1892 moanim 2034 nfrexdya 2429 r19.26-3 2521 r19.41 2544 rexcomf 2551 3reeanv 2559 cbvreu 2610 ceqsex3v 2683 rexab 2799 rexrab 2800 rmo4 2830 rmo3f 2834 reuind 2842 sbc3an 2922 rmo3 2952 ssrab 3122 rexun 3203 elin3 3214 inass 3233 unssdif 3258 indifdir 3279 difin2 3285 inrab2 3296 rabun2 3302 reuun2 3306 undif4 3372 rexsns 3510 rexdifsn 3602 2ralunsn 3672 iuncom4 3767 iunxiun 3840 inuni 4020 unidif0 4031 bnd2 4037 otth2 4101 copsexg 4104 copsex4g 4107 opeqsn 4112 opelopabsbALT 4119 elpwpwel 4334 suc11g 4410 rabxp 4514 opeliunxp 4532 xpundir 4534 xpiundi 4535 xpiundir 4536 brinxp2 4544 rexiunxp 4619 brres 4761 brresg 4763 dmres 4776 resiexg 4800 dminss 4889 imainss 4890 ssrnres 4917 elxp4 4962 elxp5 4963 cnvresima 4964 coundi 4976 resco 4979 imaco 4980 coiun 4984 coi1 4990 coass 4993 xpcom 5021 dffun2 5069 fncnv 5125 imadiflem 5138 imadif 5139 imainlem 5140 mptun 5190 fcnvres 5242 dff1o2 5306 dff1o3 5307 ffoss 5333 f11o 5334 brprcneu 5346 fvun2 5420 eqfnfv3 5452 respreima 5480 f1ompt 5503 fsn 5524 abrexco 5592 imaiun 5593 f1mpt 5604 dff1o6 5609 oprabid 5735 dfoprab2 5750 oprab4 5774 mpomptx 5794 opabex3d 5950 opabex3 5951 abexssex 5954 dfopab2 6017 dfoprab3s 6018 1stconst 6048 2ndconst 6049 xporderlem 6058 spc2ed 6060 f1od2 6062 brtpos2 6078 tpostpos 6091 tposmpo 6108 oviec 6465 mapsncnv 6519 dfixp 6524 domen 6575 mapsnen 6635 xpsnen 6644 xpcomco 6649 xpassen 6653 ltexpi 7046 dfmq0qs 7138 dfplq0qs 7139 enq0enq 7140 enq0ref 7142 enq0tr 7143 nqnq0pi 7147 prnmaxl 7197 prnminu 7198 addsrpr 7441 mulsrpr 7442 addcnsr 7521 mulcnsr 7522 ltresr 7526 addvalex 7531 axprecex 7565 elnnz 8916 fnn0ind 9019 rexuz2 9226 qreccl 9284 rexrp 9313 elixx3g 9525 elfz2 9638 elfzuzb 9641 fznn 9710 elfz2nn0 9733 fznn0 9734 4fvwrd4 9758 elfzo2 9768 fzind2 9857 cvg1nlemres 10597 fsum2dlemstep 11042 modfsummod 11066 divalgb 11417 bezoutlemmain 11479 isprm2 11591 oddpwdc 11644 ntreq0 12083 cnnei 12182 txlm 12229 blres 12362 isms2 12382 limcrcl 12509 bdcriota 12662 bj-peano4 12738 alsconv 12828 |
Copyright terms: Public domain | W3C validator |