![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ancom | GIF version |
Description: Commutative law for conjunction. Theorem *4.3 of [WhiteheadRussell] p. 118. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Wolf Lammen, 4-Nov-2012.) |
Ref | Expression |
---|---|
ancom | ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 265 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) | |
2 | pm3.22 265 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜑 ∧ 𝜓)) | |
3 | 1, 2 | impbii 126 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ancomd 267 ancomsd 269 biancomi 270 biancomd 271 pm4.71r 390 pm5.32rd 451 pm5.32ri 455 anbi2ci 459 anbi12ci 461 bianassc 470 mpan10 474 an12 561 an32 562 an13 563 an42 587 andir 820 rbaib 922 rbaibr 923 3anrot 985 3ancoma 987 excxor 1389 xorcom 1399 xordc 1403 xordc1 1404 dfbi3dc 1408 ancomsimp 1451 exancom 1619 19.29r 1632 19.42h 1698 19.42 1699 eu1 2067 moaneu 2118 moanmo 2119 2eu7 2136 eq2tri 2253 r19.28av 2630 r19.29r 2632 r19.42v 2651 rexcomf 2656 rabswap 2673 euxfr2dc 2946 rmo4 2954 reu8 2957 rmo3f 2958 rmo3 3078 incom 3352 difin2 3422 symdifxor 3426 inuni 4185 eqvinop 4273 uniuni 4483 dtruex 4592 elvvv 4723 brinxp2 4727 dmuni 4873 dfres2 4995 dfima2 5008 imadmrn 5016 imai 5022 cnvxp 5085 cnvcnvsn 5143 mptpreima 5160 rnco 5173 unixpm 5202 ressn 5207 xpcom 5213 fncnv 5321 fununi 5323 imadiflem 5334 fnres 5371 fnopabg 5378 dff1o2 5506 eqfnfv3 5658 respreima 5687 fsn 5731 fliftcnv 5839 isoini 5862 spc2ed 6288 brtpos2 6306 tpostpos 6319 tposmpo 6336 nnaord 6564 pmex 6709 elpmg 6720 mapval2 6734 mapsnen 6867 map1 6868 xpsnen 6877 xpcomco 6882 elfi2 7033 supmoti 7054 cnvti 7080 2omotaplemap 7319 elni2 7376 enq0enq 7493 prltlu 7549 prnmaxl 7550 prnminu 7551 nqprrnd 7605 ltpopr 7657 letri3 8102 lesub0 8500 creur 8980 xrletri3 9873 iooneg 10057 iccneg 10058 elfzuzb 10088 fzrev 10153 redivap 11021 imdivap 11028 rersqreu 11175 lenegsq 11242 climrecvg1n 11494 fisumcom2 11584 fsumcom 11585 fprodcom2fi 11772 fprodcom 11773 gcdcom 12113 bezoutlembi 12145 dfgcd2 12154 lcmcom 12205 isprm2 12258 unennn 12557 dfrhm2 13653 issubrng 13698 ntreq0 14311 restopn2 14362 ismet2 14533 blres 14613 metrest 14685 dedekindicclemicc 14811 sincosq3sgn 15004 lgsdi 15194 lgsquadlem3 15236 2lgslem1a 15245 |
Copyright terms: Public domain | W3C validator |