Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ancom | GIF version |
Description: Commutative law for conjunction. Theorem *4.3 of [WhiteheadRussell] p. 118. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Wolf Lammen, 4-Nov-2012.) |
Ref | Expression |
---|---|
ancom | ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 263 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) | |
2 | pm3.22 263 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜑 ∧ 𝜓)) | |
3 | 1, 2 | impbii 125 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ancomd 265 ancomsd 267 biancomi 268 biancomd 269 pm4.71r 388 pm5.32rd 447 pm5.32ri 451 anbi2ci 455 anbi12ci 457 mpan10 466 an12 551 an32 552 an13 553 an42 577 andir 809 rbaib 911 rbaibr 912 3anrot 973 3ancoma 975 excxor 1368 xorcom 1378 xordc 1382 xordc1 1383 dfbi3dc 1387 ancomsimp 1428 exancom 1596 19.29r 1609 19.42h 1675 19.42 1676 eu1 2039 moaneu 2090 moanmo 2091 2eu7 2108 eq2tri 2226 r19.28av 2602 r19.29r 2604 r19.42v 2623 rexcomf 2628 rabswap 2644 euxfr2dc 2911 rmo4 2919 reu8 2922 rmo3f 2923 rmo3 3042 incom 3314 difin2 3384 symdifxor 3388 inuni 4134 eqvinop 4221 uniuni 4429 dtruex 4536 elvvv 4667 brinxp2 4671 dmuni 4814 dfres2 4936 dfima2 4948 imadmrn 4956 imai 4960 cnvxp 5022 cnvcnvsn 5080 mptpreima 5097 rnco 5110 unixpm 5139 ressn 5144 xpcom 5150 fncnv 5254 fununi 5256 imadiflem 5267 fnres 5304 fnopabg 5311 dff1o2 5437 eqfnfv3 5585 respreima 5613 fsn 5657 fliftcnv 5763 isoini 5786 spc2ed 6201 brtpos2 6219 tpostpos 6232 tposmpo 6249 nnaord 6477 pmex 6619 elpmg 6630 mapval2 6644 mapsnen 6777 map1 6778 xpsnen 6787 xpcomco 6792 elfi2 6937 supmoti 6958 cnvti 6984 elni2 7255 enq0enq 7372 prltlu 7428 prnmaxl 7429 prnminu 7430 nqprrnd 7484 ltpopr 7536 letri3 7979 lesub0 8377 creur 8854 xrletri3 9740 iooneg 9924 iccneg 9925 elfzuzb 9954 fzrev 10019 redivap 10816 imdivap 10823 rersqreu 10970 lenegsq 11037 climrecvg1n 11289 fisumcom2 11379 fsumcom 11380 fprodcom2fi 11567 fprodcom 11568 gcdcom 11906 bezoutlembi 11938 dfgcd2 11947 lcmcom 11996 isprm2 12049 unennn 12330 ntreq0 12772 restopn2 12823 ismet2 12994 blres 13074 metrest 13146 dedekindicclemicc 13250 sincosq3sgn 13389 lgsdi 13578 |
Copyright terms: Public domain | W3C validator |