| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancom | GIF version | ||
| Description: Commutative law for conjunction. Theorem *4.3 of [WhiteheadRussell] p. 118. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Wolf Lammen, 4-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancom | ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 265 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) | |
| 2 | pm3.22 265 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜑 ∧ 𝜓)) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ancomd 267 ancomsd 269 biancomi 270 biancomd 271 pm4.71r 390 pm5.32rd 451 pm5.32ri 455 anbi2ci 459 anbi12ci 461 bianassc 470 mpan10 474 an12 561 an32 562 an13 563 an42 587 andir 820 rbaib 922 rbaibr 923 3anrot 985 3ancoma 987 excxor 1389 xorcom 1399 xordc 1403 xordc1 1404 dfbi3dc 1408 ancomsimp 1451 exancom 1622 19.29r 1635 19.42h 1701 19.42 1702 eu1 2070 moaneu 2121 moanmo 2122 2eu7 2139 eq2tri 2256 r19.28av 2633 r19.29r 2635 r19.42v 2654 rexcomf 2659 rabswap 2676 euxfr2dc 2949 rmo4 2957 reu8 2960 rmo3f 2961 rmo3 3081 incom 3355 difin2 3425 symdifxor 3429 inuni 4188 eqvinop 4276 uniuni 4486 dtruex 4595 elvvv 4726 brinxp2 4730 dmuni 4876 dfres2 4998 dfima2 5011 imadmrn 5019 imai 5025 cnvxp 5088 cnvcnvsn 5146 mptpreima 5163 rnco 5176 unixpm 5205 ressn 5210 xpcom 5216 fncnv 5324 fununi 5326 imadiflem 5337 fnres 5374 fnopabg 5381 dff1o2 5509 eqfnfv3 5661 respreima 5690 fsn 5734 fliftcnv 5842 isoini 5865 spc2ed 6291 brtpos2 6309 tpostpos 6322 tposmpo 6339 nnaord 6567 pmex 6712 elpmg 6723 mapval2 6737 mapsnen 6870 map1 6871 xpsnen 6880 xpcomco 6885 elfi2 7038 supmoti 7059 cnvti 7085 2omotaplemap 7324 elni2 7381 enq0enq 7498 prltlu 7554 prnmaxl 7555 prnminu 7556 nqprrnd 7610 ltpopr 7662 letri3 8107 lesub0 8506 creur 8986 xrletri3 9879 iooneg 10063 iccneg 10064 elfzuzb 10094 fzrev 10159 redivap 11039 imdivap 11046 rersqreu 11193 lenegsq 11260 climrecvg1n 11513 fisumcom2 11603 fsumcom 11604 fprodcom2fi 11791 fprodcom 11792 gcdcom 12140 bezoutlembi 12172 dfgcd2 12181 lcmcom 12232 isprm2 12285 unennn 12614 dfrhm2 13710 issubrng 13755 ntreq0 14368 restopn2 14419 ismet2 14590 blres 14670 metrest 14742 dedekindicclemicc 14868 sincosq3sgn 15064 lgsdi 15278 lgsquadlem3 15320 2lgslem1a 15329 |
| Copyright terms: Public domain | W3C validator |