![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ancom | GIF version |
Description: Commutative law for conjunction. Theorem *4.3 of [WhiteheadRussell] p. 118. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Wolf Lammen, 4-Nov-2012.) |
Ref | Expression |
---|---|
ancom | ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 263 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) | |
2 | pm3.22 263 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜑 ∧ 𝜓)) | |
3 | 1, 2 | impbii 125 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ancomd 265 ancomsd 267 pm4.71r 385 pm5.32rd 442 pm5.32ri 446 anbi2ci 450 anbi12ci 452 mpan10 461 an12 531 an32 532 an13 533 an42 557 andir 774 rbaib 874 rbaibr 875 3anrot 935 3ancoma 937 excxor 1324 xorcom 1334 xordc 1338 xordc1 1339 dfbi3dc 1343 ancomsimp 1384 exancom 1555 19.29r 1568 19.42h 1633 19.42 1634 eu1 1985 moaneu 2036 moanmo 2037 2eu7 2054 eq2tri 2159 r19.28av 2527 r19.29r 2529 r19.42v 2546 rexcomf 2551 rabswap 2567 euxfr2dc 2822 rmo4 2830 reu8 2833 rmo3f 2834 rmo3 2952 incom 3215 difin2 3285 symdifxor 3289 inuni 4020 eqvinop 4103 uniuni 4310 dtruex 4412 elvvv 4540 brinxp2 4544 dmuni 4687 dfres2 4807 dfima2 4819 imadmrn 4827 imai 4831 cnvxp 4893 cnvcnvsn 4951 mptpreima 4968 rnco 4981 unixpm 5010 ressn 5015 xpcom 5021 fncnv 5125 fununi 5127 imadiflem 5138 fnres 5175 fnopabg 5182 dff1o2 5306 eqfnfv3 5452 respreima 5480 fsn 5524 fliftcnv 5628 isoini 5651 spc2ed 6060 brtpos2 6078 tpostpos 6091 tposmpo 6108 nnaord 6335 pmex 6477 elpmg 6488 mapval2 6502 mapsnen 6635 map1 6636 xpsnen 6644 xpcomco 6649 supmoti 6795 cnvti 6821 elni2 7023 enq0enq 7140 prltlu 7196 prnmaxl 7197 prnminu 7198 nqprrnd 7252 ltpopr 7304 letri3 7716 lesub0 8108 creur 8575 xrletri3 9429 iooneg 9612 iccneg 9613 elfzuzb 9641 fzrev 9705 redivap 10487 imdivap 10494 rersqreu 10640 lenegsq 10707 climrecvg1n 10956 fisumcom2 11046 fsumcom 11047 gcdcom 11457 bezoutlembi 11486 dfgcd2 11495 lcmcom 11538 isprm2 11591 unennn 11702 ntreq0 12083 restopn2 12134 ismet2 12282 blres 12362 metrest 12434 |
Copyright terms: Public domain | W3C validator |