| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancom | GIF version | ||
| Description: Commutative law for conjunction. Theorem *4.3 of [WhiteheadRussell] p. 118. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Wolf Lammen, 4-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancom | ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 265 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) | |
| 2 | pm3.22 265 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜑 ∧ 𝜓)) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ancomd 267 ancomsd 269 biancomi 270 biancomd 271 pm4.71r 390 pm5.32rd 451 pm5.32ri 455 anbi2ci 459 anbi12ci 461 bianassc 470 mpan10 474 an12 561 an32 562 an13 563 an42 587 andir 820 rbaib 922 rbaibr 923 3anrot 985 3ancoma 987 excxor 1397 xorcom 1407 xordc 1411 xordc1 1412 dfbi3dc 1416 ancomsimp 1459 exancom 1630 19.29r 1643 19.42h 1709 19.42 1710 eu1 2078 moaneu 2129 moanmo 2130 2eu7 2147 eq2tri 2264 r19.28av 2641 r19.29r 2643 r19.42v 2662 rexcomf 2667 rabswap 2684 euxfr2dc 2957 rmo4 2965 reu8 2968 rmo3f 2969 rmo3 3089 incom 3364 difin2 3434 symdifxor 3438 inuni 4198 eqvinop 4286 uniuni 4497 dtruex 4606 elvvv 4737 brinxp2 4741 dmuni 4887 dfres2 5010 dfima2 5023 imadmrn 5031 imai 5037 cnvxp 5100 cnvcnvsn 5158 mptpreima 5175 rnco 5188 unixpm 5217 ressn 5222 xpcom 5228 fncnv 5339 fununi 5341 imadiflem 5352 fnres 5391 fnopabg 5398 dff1o2 5526 eqfnfv3 5678 respreima 5707 fsn 5751 fliftcnv 5863 isoini 5886 spc2ed 6318 brtpos2 6336 tpostpos 6349 tposmpo 6366 nnaord 6594 pmex 6739 elpmg 6750 mapval2 6764 mapsnen 6902 map1 6903 xpsnen 6915 xpcomco 6920 elfi2 7073 supmoti 7094 cnvti 7120 2omotaplemap 7368 elni2 7426 enq0enq 7543 prltlu 7599 prnmaxl 7600 prnminu 7601 nqprrnd 7655 ltpopr 7707 letri3 8152 lesub0 8551 creur 9031 xrletri3 9925 iooneg 10109 iccneg 10110 elfzuzb 10140 fzrev 10205 redivap 11127 imdivap 11134 rersqreu 11281 lenegsq 11348 climrecvg1n 11601 fisumcom2 11691 fsumcom 11692 fprodcom2fi 11879 fprodcom 11880 gcdcom 12236 bezoutlembi 12268 dfgcd2 12277 lcmcom 12328 isprm2 12381 unennn 12710 dfrhm2 13858 issubrng 13903 ntreq0 14546 restopn2 14597 ismet2 14768 blres 14848 metrest 14920 dedekindicclemicc 15046 sincosq3sgn 15242 lgsdi 15456 lgsquadlem3 15498 2lgslem1a 15507 |
| Copyright terms: Public domain | W3C validator |