| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancom | GIF version | ||
| Description: Commutative law for conjunction. Theorem *4.3 of [WhiteheadRussell] p. 118. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Wolf Lammen, 4-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancom | ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 265 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) | |
| 2 | pm3.22 265 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜑 ∧ 𝜓)) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ancomd 267 ancomsd 269 biancomi 270 biancomd 271 pm4.71r 390 pm5.32rd 451 pm5.32ri 455 anbi2ci 459 anbi12ci 461 bianassc 470 mpan10 474 an12 561 an32 562 an13 563 an42 587 andir 824 rbaib 926 rbaibr 927 ifptru 995 ifpfal 996 3anrot 1007 3ancoma 1009 excxor 1420 xorcom 1430 xordc 1434 xordc1 1435 dfbi3dc 1439 ancomsimp 1483 exancom 1654 19.29r 1667 19.42h 1733 19.42 1734 eu1 2102 moaneu 2154 moanmo 2155 2eu7 2172 eq2tri 2289 r19.28av 2667 r19.29r 2669 r19.42v 2688 rexcomf 2693 rabswap 2710 euxfr2dc 2988 rmo4 2996 reu8 2999 rmo3f 3000 rmo3 3121 incom 3396 difin2 3466 symdifxor 3470 elif 3614 inuni 4238 eqvinop 4328 uniuni 4541 dtruex 4650 elvvv 4781 brinxp2 4785 dmuni 4932 dfres2 5056 dfima2 5069 imadmrn 5077 imai 5083 cnvxp 5146 cnvcnvsn 5204 mptpreima 5221 rnco 5234 unixpm 5263 ressn 5268 xpcom 5274 fncnv 5386 fununi 5388 imadiflem 5399 fnres 5439 fnopabg 5446 dff1o2 5576 eqfnfv3 5733 respreima 5762 fsn 5806 fliftcnv 5918 isoini 5941 spc2ed 6377 brtpos2 6395 tpostpos 6408 tposmpo 6425 nnaord 6653 pmex 6798 elpmg 6809 mapval2 6823 mapsnen 6962 map1 6963 xpsnen 6976 xpcomco 6981 elfi2 7135 supmoti 7156 cnvti 7182 2omotaplemap 7439 elni2 7497 enq0enq 7614 prltlu 7670 prnmaxl 7671 prnminu 7672 nqprrnd 7726 ltpopr 7778 letri3 8223 lesub0 8622 creur 9102 xrletri3 9996 iooneg 10180 iccneg 10181 elfzuzb 10211 fzrev 10276 redivap 11380 imdivap 11387 rersqreu 11534 lenegsq 11601 climrecvg1n 11854 fisumcom2 11944 fsumcom 11945 fprodcom2fi 12132 fprodcom 12133 gcdcom 12489 bezoutlembi 12521 dfgcd2 12530 lcmcom 12581 isprm2 12634 unennn 12963 dfrhm2 14112 issubrng 14157 ntreq0 14800 restopn2 14851 ismet2 15022 blres 15102 metrest 15174 dedekindicclemicc 15300 sincosq3sgn 15496 lgsdi 15710 lgsquadlem3 15752 2lgslem1a 15761 |
| Copyright terms: Public domain | W3C validator |