| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancom | GIF version | ||
| Description: Commutative law for conjunction. Theorem *4.3 of [WhiteheadRussell] p. 118. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Wolf Lammen, 4-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancom | ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 265 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) | |
| 2 | pm3.22 265 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜑 ∧ 𝜓)) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ancomd 267 ancomsd 269 biancomi 270 biancomd 271 pm4.71r 390 pm5.32rd 451 pm5.32ri 455 anbi2ci 459 anbi12ci 461 bianassc 470 mpan10 474 an12 561 an32 562 an13 563 an42 587 andir 821 rbaib 923 rbaibr 924 3anrot 986 3ancoma 988 excxor 1398 xorcom 1408 xordc 1412 xordc1 1413 dfbi3dc 1417 ancomsimp 1461 exancom 1632 19.29r 1645 19.42h 1711 19.42 1712 eu1 2080 moaneu 2131 moanmo 2132 2eu7 2149 eq2tri 2266 r19.28av 2643 r19.29r 2645 r19.42v 2664 rexcomf 2669 rabswap 2686 euxfr2dc 2962 rmo4 2970 reu8 2973 rmo3f 2974 rmo3 3094 incom 3369 difin2 3439 symdifxor 3443 elif 3587 inuni 4207 eqvinop 4295 uniuni 4506 dtruex 4615 elvvv 4746 brinxp2 4750 dmuni 4897 dfres2 5020 dfima2 5033 imadmrn 5041 imai 5047 cnvxp 5110 cnvcnvsn 5168 mptpreima 5185 rnco 5198 unixpm 5227 ressn 5232 xpcom 5238 fncnv 5349 fununi 5351 imadiflem 5362 fnres 5402 fnopabg 5409 dff1o2 5539 eqfnfv3 5692 respreima 5721 fsn 5765 fliftcnv 5877 isoini 5900 spc2ed 6332 brtpos2 6350 tpostpos 6363 tposmpo 6380 nnaord 6608 pmex 6753 elpmg 6764 mapval2 6778 mapsnen 6917 map1 6918 xpsnen 6931 xpcomco 6936 elfi2 7089 supmoti 7110 cnvti 7136 2omotaplemap 7389 elni2 7447 enq0enq 7564 prltlu 7620 prnmaxl 7621 prnminu 7622 nqprrnd 7676 ltpopr 7728 letri3 8173 lesub0 8572 creur 9052 xrletri3 9946 iooneg 10130 iccneg 10131 elfzuzb 10161 fzrev 10226 redivap 11260 imdivap 11267 rersqreu 11414 lenegsq 11481 climrecvg1n 11734 fisumcom2 11824 fsumcom 11825 fprodcom2fi 12012 fprodcom 12013 gcdcom 12369 bezoutlembi 12401 dfgcd2 12410 lcmcom 12461 isprm2 12514 unennn 12843 dfrhm2 13991 issubrng 14036 ntreq0 14679 restopn2 14730 ismet2 14901 blres 14981 metrest 15053 dedekindicclemicc 15179 sincosq3sgn 15375 lgsdi 15589 lgsquadlem3 15631 2lgslem1a 15640 |
| Copyright terms: Public domain | W3C validator |