| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancom | GIF version | ||
| Description: Commutative law for conjunction. Theorem *4.3 of [WhiteheadRussell] p. 118. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Wolf Lammen, 4-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancom | ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 265 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) | |
| 2 | pm3.22 265 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜑 ∧ 𝜓)) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ancomd 267 ancomsd 269 biancomi 270 biancomd 271 pm4.71r 390 pm5.32rd 451 pm5.32ri 455 anbi2ci 459 anbi12ci 461 bianassc 470 mpan10 474 an12 561 an32 562 an13 563 an42 587 andir 820 rbaib 922 rbaibr 923 3anrot 985 3ancoma 987 excxor 1397 xorcom 1407 xordc 1411 xordc1 1412 dfbi3dc 1416 ancomsimp 1459 exancom 1630 19.29r 1643 19.42h 1709 19.42 1710 eu1 2078 moaneu 2129 moanmo 2130 2eu7 2147 eq2tri 2264 r19.28av 2641 r19.29r 2643 r19.42v 2662 rexcomf 2667 rabswap 2684 euxfr2dc 2957 rmo4 2965 reu8 2968 rmo3f 2969 rmo3 3089 incom 3364 difin2 3434 symdifxor 3438 inuni 4198 eqvinop 4286 uniuni 4496 dtruex 4605 elvvv 4736 brinxp2 4740 dmuni 4886 dfres2 5008 dfima2 5021 imadmrn 5029 imai 5035 cnvxp 5098 cnvcnvsn 5156 mptpreima 5173 rnco 5186 unixpm 5215 ressn 5220 xpcom 5226 fncnv 5334 fununi 5336 imadiflem 5347 fnres 5386 fnopabg 5393 dff1o2 5521 eqfnfv3 5673 respreima 5702 fsn 5746 fliftcnv 5854 isoini 5877 spc2ed 6309 brtpos2 6327 tpostpos 6340 tposmpo 6357 nnaord 6585 pmex 6730 elpmg 6741 mapval2 6755 mapsnen 6888 map1 6889 xpsnen 6898 xpcomco 6903 elfi2 7056 supmoti 7077 cnvti 7103 2omotaplemap 7351 elni2 7409 enq0enq 7526 prltlu 7582 prnmaxl 7583 prnminu 7584 nqprrnd 7638 ltpopr 7690 letri3 8135 lesub0 8534 creur 9014 xrletri3 9908 iooneg 10092 iccneg 10093 elfzuzb 10123 fzrev 10188 redivap 11104 imdivap 11111 rersqreu 11258 lenegsq 11325 climrecvg1n 11578 fisumcom2 11668 fsumcom 11669 fprodcom2fi 11856 fprodcom 11857 gcdcom 12213 bezoutlembi 12245 dfgcd2 12254 lcmcom 12305 isprm2 12358 unennn 12687 dfrhm2 13834 issubrng 13879 ntreq0 14522 restopn2 14573 ismet2 14744 blres 14824 metrest 14896 dedekindicclemicc 15022 sincosq3sgn 15218 lgsdi 15432 lgsquadlem3 15474 2lgslem1a 15483 |
| Copyright terms: Public domain | W3C validator |