| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bianass | GIF version | ||
| Description: An inference to merge two lists of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019.) |
| Ref | Expression |
|---|---|
| bianass.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| bianass | ⊢ ((𝜂 ∧ 𝜑) ↔ ((𝜂 ∧ 𝜓) ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bianass.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | anbi2i 457 | . 2 ⊢ ((𝜂 ∧ 𝜑) ↔ (𝜂 ∧ (𝜓 ∧ 𝜒))) |
| 3 | anass 401 | . 2 ⊢ (((𝜂 ∧ 𝜓) ∧ 𝜒) ↔ (𝜂 ∧ (𝜓 ∧ 𝜒))) | |
| 4 | 2, 3 | bitr4i 187 | 1 ⊢ ((𝜂 ∧ 𝜑) ↔ ((𝜂 ∧ 𝜓) ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bianassc 470 |
| Copyright terms: Public domain | W3C validator |