![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fal | GIF version |
Description: The truth value ⊥ is refutable. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.) |
Ref | Expression |
---|---|
fal | ⊢ ¬ ⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1357 | . . 3 ⊢ ⊤ | |
2 | 1 | notnoti 645 | . 2 ⊢ ¬ ¬ ⊤ |
3 | df-fal 1359 | . 2 ⊢ (⊥ ↔ ¬ ⊤) | |
4 | 2, 3 | mtbir 671 | 1 ⊢ ¬ ⊥ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ⊤wtru 1354 ⊥wfal 1358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 |
This theorem is referenced by: nbfal 1364 bifal 1366 falim 1367 dfnot 1371 notfal 1414 alnex 1499 csbprc 3469 bj-stfal 14497 bj-dcfal 14510 bdnth 14589 |
Copyright terms: Public domain | W3C validator |