![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fal | GIF version |
Description: The truth value ⊥ is refutable. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.) |
Ref | Expression |
---|---|
fal | ⊢ ¬ ⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1368 | . . 3 ⊢ ⊤ | |
2 | 1 | notnoti 646 | . 2 ⊢ ¬ ¬ ⊤ |
3 | df-fal 1370 | . 2 ⊢ (⊥ ↔ ¬ ⊤) | |
4 | 2, 3 | mtbir 672 | 1 ⊢ ¬ ⊥ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ⊤wtru 1365 ⊥wfal 1369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 |
This theorem is referenced by: nbfal 1375 bifal 1377 falim 1378 dfnot 1382 notfal 1425 alnex 1510 csbprc 3492 bj-stfal 15234 bj-dcfal 15247 bdnth 15326 |
Copyright terms: Public domain | W3C validator |