Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fal | GIF version |
Description: The truth value ⊥ is refutable. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.) |
Ref | Expression |
---|---|
fal | ⊢ ¬ ⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1339 | . . 3 ⊢ ⊤ | |
2 | 1 | notnoti 635 | . 2 ⊢ ¬ ¬ ⊤ |
3 | df-fal 1341 | . 2 ⊢ (⊥ ↔ ¬ ⊤) | |
4 | 2, 3 | mtbir 661 | 1 ⊢ ¬ ⊥ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ⊤wtru 1336 ⊥wfal 1340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-fal 1341 |
This theorem is referenced by: nbfal 1346 bifal 1348 falim 1349 dfnot 1353 notfal 1396 alnex 1479 csbprc 3439 bj-stfal 13288 bj-dcfal 13298 bdnth 13380 |
Copyright terms: Public domain | W3C validator |