| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fal | GIF version | ||
| Description: The truth value ⊥ is refutable. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| fal | ⊢ ¬ ⊥ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1368 | . . 3 ⊢ ⊤ | |
| 2 | 1 | notnoti 646 | . 2 ⊢ ¬ ¬ ⊤ |
| 3 | df-fal 1370 | . 2 ⊢ (⊥ ↔ ¬ ⊤) | |
| 4 | 2, 3 | mtbir 672 | 1 ⊢ ¬ ⊥ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ⊤wtru 1365 ⊥wfal 1369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 |
| This theorem is referenced by: nbfal 1375 bifal 1377 falim 1378 dfnot 1382 notfal 1425 alnex 1513 csbprc 3497 bj-stfal 15472 bj-dcfal 15485 bdnth 15564 |
| Copyright terms: Public domain | W3C validator |