| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biortn | GIF version | ||
| Description: A wff is equivalent to its negated disjunction with falsehood. (Contributed by NM, 9-Jul-2012.) |
| Ref | Expression |
|---|---|
| biortn | ⊢ (𝜑 → (𝜓 ↔ (¬ 𝜑 ∨ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 630 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
| 2 | biorf 745 | . 2 ⊢ (¬ ¬ 𝜑 → (𝜓 ↔ (¬ 𝜑 ∨ 𝜓))) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜓 ↔ (¬ 𝜑 ∨ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: oranabs 816 |
| Copyright terms: Public domain | W3C validator |