![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biorf | GIF version |
Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
Ref | Expression |
---|---|
biorf | ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 711 | . 2 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
2 | orel1 725 | . 2 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) | |
3 | 1, 2 | impbid2 143 | 1 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 615 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biortn 745 pm5.61 794 pm5.55dc 913 euor 2052 eueq3dc 2913 ifordc 3575 difprsnss 3732 exmidsssn 4204 opthprc 4679 frecabcl 6402 frecsuclem 6409 swoord1 6566 indpi 7343 enq0tr 7435 mulap0r 8574 mulge0 8578 leltap 8584 ap0gt0 8599 sumsplitdc 11442 coprm 12146 bdbl 14088 subctctexmid 14835 |
Copyright terms: Public domain | W3C validator |