| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biorf | GIF version | ||
| Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
| Ref | Expression |
|---|---|
| biorf | ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 716 | . 2 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 2 | orel1 730 | . 2 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) | |
| 3 | 1, 2 | impbid2 143 | 1 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biortn 750 pm5.61 799 pm5.55dc 918 3bior1fd 1386 3bior2fd 1388 euor 2103 eueq3dc 2977 ifordc 3644 difprsnss 3805 exmidsssn 4285 opthprc 4769 frecabcl 6543 frecsuclem 6550 swoord1 6707 indpi 7525 enq0tr 7617 mulap0r 8758 mulge0 8762 leltap 8768 ap0gt0 8783 sumsplitdc 11938 coprm 12661 gsumval2 13425 bdbl 15171 subctctexmid 16325 |
| Copyright terms: Public domain | W3C validator |