Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biorfi | GIF version |
Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) |
Ref | Expression |
---|---|
biorfi.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
biorfi | ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biorfi.1 | . 2 ⊢ ¬ 𝜑 | |
2 | orc 707 | . . 3 ⊢ (𝜓 → (𝜓 ∨ 𝜑)) | |
3 | orel2 721 | . . 3 ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) | |
4 | 2, 3 | impbid2 142 | . 2 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜓 ∨ 𝜑))) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 ∨ wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm4.43 944 dn1dc 955 excxor 1373 un0 3448 opthprc 4662 frec0g 6376 nninfwlporlemd 7148 if0ab 13840 |
Copyright terms: Public domain | W3C validator |