ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biorfi GIF version

Theorem biorfi 736
Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.)
Hypothesis
Ref Expression
biorfi.1 ¬ 𝜑
Assertion
Ref Expression
biorfi (𝜓 ↔ (𝜓𝜑))

Proof of Theorem biorfi
StepHypRef Expression
1 biorfi.1 . 2 ¬ 𝜑
2 orc 702 . . 3 (𝜓 → (𝜓𝜑))
3 orel2 716 . . 3 𝜑 → ((𝜓𝜑) → 𝜓))
42, 3impbid2 142 . 2 𝜑 → (𝜓 ↔ (𝜓𝜑)))
51, 4ax-mp 5 1 (𝜓 ↔ (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 104  wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm4.43  939  dn1dc  950  excxor  1368  un0  3442  opthprc  4655  frec0g  6365  if0ab  13697
  Copyright terms: Public domain W3C validator