ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biorfi GIF version

Theorem biorfi 746
Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.)
Hypothesis
Ref Expression
biorfi.1 ¬ 𝜑
Assertion
Ref Expression
biorfi (𝜓 ↔ (𝜓𝜑))

Proof of Theorem biorfi
StepHypRef Expression
1 biorfi.1 . 2 ¬ 𝜑
2 orc 712 . . 3 (𝜓 → (𝜓𝜑))
3 orel2 726 . . 3 𝜑 → ((𝜓𝜑) → 𝜓))
42, 3impbid2 143 . 2 𝜑 → (𝜓 ↔ (𝜓𝜑)))
51, 4ax-mp 5 1 (𝜓 ↔ (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wo 708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.43  949  dn1dc  960  excxor  1378  un0  3454  opthprc  4671  frec0g  6388  nninfwlporlemd  7160  if0ab  14126
  Copyright terms: Public domain W3C validator