ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biortn Unicode version

Theorem biortn 735
Description: A wff is equivalent to its negated disjunction with falsehood. (Contributed by NM, 9-Jul-2012.)
Assertion
Ref Expression
biortn  |-  ( ph  ->  ( ps  <->  ( -.  ph  \/  ps ) ) )

Proof of Theorem biortn
StepHypRef Expression
1 notnot 619 . 2  |-  ( ph  ->  -.  -.  ph )
2 biorf 734 . 2  |-  ( -. 
-.  ph  ->  ( ps  <->  ( -.  ph  \/  ps ) ) )
31, 2syl 14 1  |-  ( ph  ->  ( ps  <->  ( -.  ph  \/  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    \/ wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  oranabs  805
  Copyright terms: Public domain W3C validator