![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > notnot | GIF version |
Description: Double negation introduction. Theorem *2.12 of [WhiteheadRussell] p. 101. This one holds for all propositions, but its converse only holds for decidable propositions (see notnotrdc 790). (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 2-Mar-2013.) |
Ref | Expression |
---|---|
notnot | ⊢ (𝜑 → ¬ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (¬ 𝜑 → ¬ 𝜑) | |
2 | 1 | con2i 593 | 1 ⊢ (𝜑 → ¬ ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-in1 580 ax-in2 581 |
This theorem is referenced by: notnotd 596 con3d 597 notnoti 610 pm3.24 663 notnotnot 664 biortn 700 imanst 780 dcn 785 con1dc 792 notnotbdc 805 eueq2dc 2789 ddifstab 3133 xrlttri3 9328 nltpnft 9340 ngtmnft 9341 bdnthALT 11999 |
Copyright terms: Public domain | W3C validator |