| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notnot | GIF version | ||
| Description: Double negation introduction. Theorem *2.12 of [WhiteheadRussell] p. 101. The converse need not hold. It holds exactly for stable propositions (by definition, see df-stab 836) and in particular for decidable propositions (see notnotrdc 848). See also notnotnot 637. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 2-Mar-2013.) |
| Ref | Expression |
|---|---|
| notnot | ⊢ (𝜑 → ¬ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (¬ 𝜑 → ¬ 𝜑) | |
| 2 | 1 | con2i 630 | 1 ⊢ (𝜑 → ¬ ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: notnotd 633 con3d 634 notnotnot 637 notnoti 648 pm3.24 698 biortn 750 dcn 847 con1dc 861 notnotbdc 877 imanst 893 eueq2dc 2976 ddifstab 3336 ifnotdc 3641 ismkvnex 7318 xrlttri3 9989 nltpnft 10006 ngtmnft 10009 bj-nnsn 16055 bj-nndcALT 16080 bdnthALT 16156 |
| Copyright terms: Public domain | W3C validator |