| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notnot | GIF version | ||
| Description: Double negation introduction. Theorem *2.12 of [WhiteheadRussell] p. 101. The converse need not hold. It holds exactly for stable propositions (by definition, see df-stab 832) and in particular for decidable propositions (see notnotrdc 844). See also notnotnot 635. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 2-Mar-2013.) |
| Ref | Expression |
|---|---|
| notnot | ⊢ (𝜑 → ¬ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (¬ 𝜑 → ¬ 𝜑) | |
| 2 | 1 | con2i 628 | 1 ⊢ (𝜑 → ¬ ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: notnotd 631 con3d 632 notnotnot 635 notnoti 646 pm3.24 694 biortn 746 dcn 843 con1dc 857 notnotbdc 873 imanst 889 eueq2dc 2945 ddifstab 3304 ifnotdc 3608 ismkvnex 7256 xrlttri3 9918 nltpnft 9935 ngtmnft 9938 bj-nnsn 15602 bj-nndcALT 15627 bdnthALT 15704 |
| Copyright terms: Public domain | W3C validator |