| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notnot | GIF version | ||
| Description: Double negation introduction. Theorem *2.12 of [WhiteheadRussell] p. 101. The converse need not hold. It holds exactly for stable propositions (by definition, see df-stab 833) and in particular for decidable propositions (see notnotrdc 845). See also notnotnot 635. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 2-Mar-2013.) |
| Ref | Expression |
|---|---|
| notnot | ⊢ (𝜑 → ¬ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (¬ 𝜑 → ¬ 𝜑) | |
| 2 | 1 | con2i 628 | 1 ⊢ (𝜑 → ¬ ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: notnotd 631 con3d 632 notnotnot 635 notnoti 646 pm3.24 695 biortn 747 dcn 844 con1dc 858 notnotbdc 874 imanst 890 eueq2dc 2950 ddifstab 3309 ifnotdc 3614 ismkvnex 7272 xrlttri3 9939 nltpnft 9956 ngtmnft 9959 bj-nnsn 15808 bj-nndcALT 15833 bdnthALT 15909 |
| Copyright terms: Public domain | W3C validator |