| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > notnot | GIF version | ||
| Description: Double negation introduction. Theorem *2.12 of [WhiteheadRussell] p. 101. The converse need not hold. It holds exactly for stable propositions (by definition, see df-stab 832) and in particular for decidable propositions (see notnotrdc 844). See also notnotnot 635. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 2-Mar-2013.) | 
| Ref | Expression | 
|---|---|
| notnot | ⊢ (𝜑 → ¬ ¬ 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (¬ 𝜑 → ¬ 𝜑) | |
| 2 | 1 | con2i 628 | 1 ⊢ (𝜑 → ¬ ¬ 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 | 
| This theorem is referenced by: notnotd 631 con3d 632 notnotnot 635 notnoti 646 pm3.24 694 biortn 746 dcn 843 con1dc 857 notnotbdc 873 imanst 889 eueq2dc 2937 ddifstab 3295 ifnotdc 3598 ismkvnex 7221 xrlttri3 9872 nltpnft 9889 ngtmnft 9892 bj-nnsn 15379 bj-nndcALT 15404 bdnthALT 15481 | 
| Copyright terms: Public domain | W3C validator |