Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nnim GIF version

Theorem bj-nnim 13616
Description: The double negation of an implication implies the implication with the consequent doubly negated. (Contributed by BJ, 24-Nov-2023.)
Assertion
Ref Expression
bj-nnim (¬ ¬ (𝜑𝜓) → (𝜑 → ¬ ¬ 𝜓))

Proof of Theorem bj-nnim
StepHypRef Expression
1 jcn 641 . 2 (𝜑 → (¬ 𝜓 → ¬ (𝜑𝜓)))
21con3rr3 623 1 (¬ ¬ (𝜑𝜓) → (𝜑 → ¬ ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 604  ax-in2 605
This theorem is referenced by:  bj-stim  13627
  Copyright terms: Public domain W3C validator