Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-stan | GIF version |
Description: The conjunction of two stable formulas is stable. See bj-stim 13781 for implication, stabnot 828 for negation, and bj-stal 13784 for universal quantification. (Contributed by BJ, 24-Nov-2023.) |
Ref | Expression |
---|---|
bj-stan | ⊢ ((STAB 𝜑 ∧ STAB 𝜓) → STAB (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-nnan 13771 | . . 3 ⊢ (¬ ¬ (𝜑 ∧ 𝜓) → (¬ ¬ 𝜑 ∧ ¬ ¬ 𝜓)) | |
2 | anim12 342 | . . 3 ⊢ (((¬ ¬ 𝜑 → 𝜑) ∧ (¬ ¬ 𝜓 → 𝜓)) → ((¬ ¬ 𝜑 ∧ ¬ ¬ 𝜓) → (𝜑 ∧ 𝜓))) | |
3 | 1, 2 | syl5 32 | . 2 ⊢ (((¬ ¬ 𝜑 → 𝜑) ∧ (¬ ¬ 𝜓 → 𝜓)) → (¬ ¬ (𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓))) |
4 | df-stab 826 | . . 3 ⊢ (STAB 𝜑 ↔ (¬ ¬ 𝜑 → 𝜑)) | |
5 | df-stab 826 | . . 3 ⊢ (STAB 𝜓 ↔ (¬ ¬ 𝜓 → 𝜓)) | |
6 | 4, 5 | anbi12i 457 | . 2 ⊢ ((STAB 𝜑 ∧ STAB 𝜓) ↔ ((¬ ¬ 𝜑 → 𝜑) ∧ (¬ ¬ 𝜓 → 𝜓))) |
7 | df-stab 826 | . 2 ⊢ (STAB (𝜑 ∧ 𝜓) ↔ (¬ ¬ (𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓))) | |
8 | 3, 6, 7 | 3imtr4i 200 | 1 ⊢ ((STAB 𝜑 ∧ STAB 𝜓) → STAB (𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 STAB wstab 825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 |
This theorem depends on definitions: df-bi 116 df-stab 826 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |