| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con3i | GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.) |
| Ref | Expression |
|---|---|
| con3i.a | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| con3i | ⊢ (¬ 𝜓 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
| 2 | con3i.a | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | nsyl 629 | 1 ⊢ (¬ 𝜓 → ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: notnotnot 635 conax1 654 pm5.21ni 704 pm2.45 739 pm2.46 740 pm3.14 754 3ianorr 1320 nalequcoms 1531 equidqe 1546 nnal 1663 ax6blem 1664 hbnt 1667 naecoms 1738 euor2 2103 moexexdc 2129 baroco 2152 necon3ai 2416 necon3bi 2417 nnral 2487 eueq3dc 2938 difin 3401 indifdir 3420 difrab 3438 csbprc 3497 ifandc 3600 nelpri 3647 nelprd 3649 opprc 3830 opprc1 3831 opprc2 3832 notnotsnex 4221 eldifpw 4513 nlimsucg 4603 nfvres 5595 nfunsn 5596 ressnop0 5746 ovprc 5961 ovprc1 5962 ovprc2 5963 mapprc 6720 ixpprc 6787 ixp0 6799 fiprc 6883 fidceq 6939 unfiexmid 6988 difinfsnlem 7174 3nsssucpw1 7319 onntri51 7323 onntri52 7327 fzdcel 10132 bcpasc 10875 flodddiv4lt 12120 bj-nnan 15466 bj-imnimnn 15468 nnnotnotr 15720 nninfsellemsuc 15743 |
| Copyright terms: Public domain | W3C validator |