Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > con3i | GIF version |
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.) |
Ref | Expression |
---|---|
con3i.a | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
con3i | ⊢ (¬ 𝜓 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
2 | con3i.a | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | nsyl 618 | 1 ⊢ (¬ 𝜓 → ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 604 ax-in2 605 |
This theorem is referenced by: notnotnot 624 conax1 643 pm5.21ni 693 pm2.45 728 pm2.46 729 pm3.14 743 3ianorr 1299 nalequcoms 1505 equidqe 1520 nnal 1637 ax6blem 1638 hbnt 1641 naecoms 1712 euor2 2072 moexexdc 2098 baroco 2121 necon3ai 2385 necon3bi 2386 nnral 2456 eueq3dc 2900 difin 3359 indifdir 3378 difrab 3396 csbprc 3454 ifandc 3557 nelpri 3600 nelprd 3602 opprc 3779 opprc1 3780 opprc2 3781 notnotsnex 4166 eldifpw 4455 nlimsucg 4543 nfvres 5519 nfunsn 5520 ressnop0 5666 ovprc 5877 ovprc1 5878 ovprc2 5879 mapprc 6618 ixpprc 6685 ixp0 6697 fiprc 6781 fidceq 6835 unfiexmid 6883 difinfsnlem 7064 3nsssucpw1 7192 onntri51 7196 onntri52 7200 fzdcel 9975 bcpasc 10679 flodddiv4lt 11873 bj-nnan 13617 bj-imnimnn 13619 nnnotnotr 13872 nninfsellemsuc 13892 |
Copyright terms: Public domain | W3C validator |