Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > con3i | GIF version |
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.) |
Ref | Expression |
---|---|
con3i.a | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
con3i | ⊢ (¬ 𝜓 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
2 | con3i.a | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | nsyl 623 | 1 ⊢ (¬ 𝜓 → ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 609 ax-in2 610 |
This theorem is referenced by: notnotnot 629 conax1 648 pm5.21ni 698 pm2.45 733 pm2.46 734 pm3.14 748 3ianorr 1304 nalequcoms 1510 equidqe 1525 nnal 1642 ax6blem 1643 hbnt 1646 naecoms 1717 euor2 2077 moexexdc 2103 baroco 2126 necon3ai 2389 necon3bi 2390 nnral 2460 eueq3dc 2904 difin 3364 indifdir 3383 difrab 3401 csbprc 3460 ifandc 3563 nelpri 3607 nelprd 3609 opprc 3786 opprc1 3787 opprc2 3788 notnotsnex 4173 eldifpw 4462 nlimsucg 4550 nfvres 5529 nfunsn 5530 ressnop0 5677 ovprc 5888 ovprc1 5889 ovprc2 5890 mapprc 6630 ixpprc 6697 ixp0 6709 fiprc 6793 fidceq 6847 unfiexmid 6895 difinfsnlem 7076 3nsssucpw1 7213 onntri51 7217 onntri52 7221 fzdcel 9996 bcpasc 10700 flodddiv4lt 11895 bj-nnan 13771 bj-imnimnn 13773 nnnotnotr 14025 nninfsellemsuc 14045 |
Copyright terms: Public domain | W3C validator |