| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con3i | GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.) |
| Ref | Expression |
|---|---|
| con3i.a | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| con3i | ⊢ (¬ 𝜓 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
| 2 | con3i.a | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | nsyl 629 | 1 ⊢ (¬ 𝜓 → ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: notnotnot 635 nsyl5 651 conax1 655 pm5.21ni 705 pm2.45 740 pm2.46 741 pm3.14 755 3ianorr 1322 nalequcoms 1541 equidqe 1556 nnal 1673 ax6blem 1674 hbnt 1677 naecoms 1748 euor2 2113 moexexdc 2139 baroco 2162 necon3ai 2426 necon3bi 2427 nnral 2497 eueq3dc 2951 difin 3414 indifdir 3433 difrab 3451 csbprc 3510 ifandc 3615 nelpri 3662 nelprd 3664 opprc 3846 opprc1 3847 opprc2 3848 notnotsnex 4239 eldifpw 4532 nlimsucg 4622 nfvres 5623 nfunsn 5624 ressnop0 5778 ovprc 5993 ovprc1 5994 ovprc2 5995 mapprc 6752 ixpprc 6819 ixp0 6831 fiprc 6921 fidceq 6981 unfiexmid 7030 difinfsnlem 7216 3nsssucpw1 7367 onntri51 7371 onntri52 7375 fzdcel 10182 bcpasc 10933 pfxclz 11155 flodddiv4lt 12324 bj-nnan 15811 bj-imnimnn 15813 nnnotnotr 16064 nninfsellemsuc 16090 |
| Copyright terms: Public domain | W3C validator |