Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > con3i | GIF version |
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.) |
Ref | Expression |
---|---|
con3i.a | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
con3i | ⊢ (¬ 𝜓 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
2 | con3i.a | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | nsyl 628 | 1 ⊢ (¬ 𝜓 → ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 614 ax-in2 615 |
This theorem is referenced by: notnotnot 634 conax1 653 pm5.21ni 703 pm2.45 738 pm2.46 739 pm3.14 753 3ianorr 1309 nalequcoms 1515 equidqe 1530 nnal 1647 ax6blem 1648 hbnt 1651 naecoms 1722 euor2 2082 moexexdc 2108 baroco 2131 necon3ai 2394 necon3bi 2395 nnral 2465 eueq3dc 2909 difin 3370 indifdir 3389 difrab 3407 csbprc 3466 ifandc 3569 nelpri 3613 nelprd 3615 opprc 3795 opprc1 3796 opprc2 3797 notnotsnex 4182 eldifpw 4471 nlimsucg 4559 nfvres 5540 nfunsn 5541 ressnop0 5689 ovprc 5900 ovprc1 5901 ovprc2 5902 mapprc 6642 ixpprc 6709 ixp0 6721 fiprc 6805 fidceq 6859 unfiexmid 6907 difinfsnlem 7088 3nsssucpw1 7225 onntri51 7229 onntri52 7233 fzdcel 10008 bcpasc 10712 flodddiv4lt 11906 bj-nnan 14028 bj-imnimnn 14030 nnnotnotr 14282 nninfsellemsuc 14302 |
Copyright terms: Public domain | W3C validator |