| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con3i | GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.) |
| Ref | Expression |
|---|---|
| con3i.a | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| con3i | ⊢ (¬ 𝜓 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
| 2 | con3i.a | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | nsyl 631 | 1 ⊢ (¬ 𝜓 → ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: notnotnot 637 nsyl5 653 conax1 657 pm5.21ni 708 pm2.45 743 pm2.46 744 pm3.14 758 3ianorr 1343 nalequcoms 1563 equidqe 1578 nnal 1695 ax6blem 1696 hbnt 1699 naecoms 1770 euor2 2136 moexexdc 2162 baroco 2185 necon3ai 2449 necon3bi 2450 nnral 2520 eueq3dc 2977 difin 3441 indifdir 3460 difrab 3478 csbprc 3537 ifandc 3643 nelpri 3690 nelprd 3692 opprc 3877 opprc1 3878 opprc2 3879 notnotsnex 4270 eldifpw 4567 nlimsucg 4657 nfvres 5662 nfunsn 5663 ressnop0 5819 ovprc 6036 ovprc1 6037 ovprc2 6038 mapprc 6797 ixpprc 6864 ixp0 6876 fiprc 6966 fidceq 7027 unfiexmid 7076 difinfsnlem 7262 3nsssucpw1 7417 onntri51 7421 onntri52 7425 fzdcel 10232 bcpasc 10983 pfxclz 11206 flodddiv4lt 12444 bj-nnan 16058 bj-imnimnn 16060 nnnotnotr 16311 nninfsellemsuc 16337 |
| Copyright terms: Public domain | W3C validator |