![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > con3i | GIF version |
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.) |
Ref | Expression |
---|---|
con3i.a | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
con3i | ⊢ (¬ 𝜓 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
2 | con3i.a | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | nsyl 629 | 1 ⊢ (¬ 𝜓 → ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
This theorem is referenced by: notnotnot 635 conax1 654 pm5.21ni 704 pm2.45 739 pm2.46 740 pm3.14 754 3ianorr 1320 nalequcoms 1528 equidqe 1543 nnal 1660 ax6blem 1661 hbnt 1664 naecoms 1735 euor2 2100 moexexdc 2126 baroco 2149 necon3ai 2413 necon3bi 2414 nnral 2484 eueq3dc 2934 difin 3396 indifdir 3415 difrab 3433 csbprc 3492 ifandc 3595 nelpri 3642 nelprd 3644 opprc 3825 opprc1 3826 opprc2 3827 notnotsnex 4216 eldifpw 4508 nlimsucg 4598 nfvres 5588 nfunsn 5589 ressnop0 5739 ovprc 5953 ovprc1 5954 ovprc2 5955 mapprc 6706 ixpprc 6773 ixp0 6785 fiprc 6869 fidceq 6925 unfiexmid 6974 difinfsnlem 7158 3nsssucpw1 7296 onntri51 7300 onntri52 7304 fzdcel 10106 bcpasc 10837 flodddiv4lt 12077 bj-nnan 15228 bj-imnimnn 15230 nnnotnotr 15482 nninfsellemsuc 15502 |
Copyright terms: Public domain | W3C validator |