| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con3i | GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.) |
| Ref | Expression |
|---|---|
| con3i.a | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| con3i | ⊢ (¬ 𝜓 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
| 2 | con3i.a | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | nsyl 629 | 1 ⊢ (¬ 𝜓 → ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: notnotnot 635 conax1 654 pm5.21ni 704 pm2.45 739 pm2.46 740 pm3.14 754 3ianorr 1321 nalequcoms 1539 equidqe 1554 nnal 1671 ax6blem 1672 hbnt 1675 naecoms 1746 euor2 2111 moexexdc 2137 baroco 2160 necon3ai 2424 necon3bi 2425 nnral 2495 eueq3dc 2946 difin 3409 indifdir 3428 difrab 3446 csbprc 3505 ifandc 3609 nelpri 3656 nelprd 3658 opprc 3839 opprc1 3840 opprc2 3841 notnotsnex 4230 eldifpw 4523 nlimsucg 4613 nfvres 5609 nfunsn 5610 ressnop0 5764 ovprc 5979 ovprc1 5980 ovprc2 5981 mapprc 6738 ixpprc 6805 ixp0 6817 fiprc 6906 fidceq 6965 unfiexmid 7014 difinfsnlem 7200 3nsssucpw1 7347 onntri51 7351 onntri52 7355 fzdcel 10161 bcpasc 10909 flodddiv4lt 12191 bj-nnan 15605 bj-imnimnn 15607 nnnotnotr 15859 nninfsellemsuc 15882 |
| Copyright terms: Public domain | W3C validator |