| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > con3i | GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.) | 
| Ref | Expression | 
|---|---|
| con3i.a | ⊢ (𝜑 → 𝜓) | 
| Ref | Expression | 
|---|---|
| con3i | ⊢ (¬ 𝜓 → ¬ 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
| 2 | con3i.a | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | nsyl 629 | 1 ⊢ (¬ 𝜓 → ¬ 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 | 
| This theorem is referenced by: notnotnot 635 conax1 654 pm5.21ni 704 pm2.45 739 pm2.46 740 pm3.14 754 3ianorr 1320 nalequcoms 1531 equidqe 1546 nnal 1663 ax6blem 1664 hbnt 1667 naecoms 1738 euor2 2103 moexexdc 2129 baroco 2152 necon3ai 2416 necon3bi 2417 nnral 2487 eueq3dc 2938 difin 3400 indifdir 3419 difrab 3437 csbprc 3496 ifandc 3599 nelpri 3646 nelprd 3648 opprc 3829 opprc1 3830 opprc2 3831 notnotsnex 4220 eldifpw 4512 nlimsucg 4602 nfvres 5592 nfunsn 5593 ressnop0 5743 ovprc 5957 ovprc1 5958 ovprc2 5959 mapprc 6711 ixpprc 6778 ixp0 6790 fiprc 6874 fidceq 6930 unfiexmid 6979 difinfsnlem 7165 3nsssucpw1 7303 onntri51 7307 onntri52 7311 fzdcel 10115 bcpasc 10858 flodddiv4lt 12103 bj-nnan 15382 bj-imnimnn 15384 nnnotnotr 15636 nninfsellemsuc 15656 | 
| Copyright terms: Public domain | W3C validator |