![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > con3i | GIF version |
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.) |
Ref | Expression |
---|---|
con3i.a | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
con3i | ⊢ (¬ 𝜓 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
2 | con3i.a | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | nsyl 628 | 1 ⊢ (¬ 𝜓 → ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 614 ax-in2 615 |
This theorem is referenced by: notnotnot 634 conax1 653 pm5.21ni 703 pm2.45 738 pm2.46 739 pm3.14 753 3ianorr 1309 nalequcoms 1517 equidqe 1532 nnal 1649 ax6blem 1650 hbnt 1653 naecoms 1724 euor2 2084 moexexdc 2110 baroco 2133 necon3ai 2396 necon3bi 2397 nnral 2467 eueq3dc 2912 difin 3373 indifdir 3392 difrab 3410 csbprc 3469 ifandc 3573 nelpri 3617 nelprd 3619 opprc 3800 opprc1 3801 opprc2 3802 notnotsnex 4188 eldifpw 4478 nlimsucg 4566 nfvres 5549 nfunsn 5550 ressnop0 5698 ovprc 5910 ovprc1 5911 ovprc2 5912 mapprc 6652 ixpprc 6719 ixp0 6731 fiprc 6815 fidceq 6869 unfiexmid 6917 difinfsnlem 7098 3nsssucpw1 7235 onntri51 7239 onntri52 7243 fzdcel 10040 bcpasc 10746 flodddiv4lt 11941 bj-nnan 14491 bj-imnimnn 14493 nnnotnotr 14745 nninfsellemsuc 14764 |
Copyright terms: Public domain | W3C validator |