Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > con3i | GIF version |
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.) |
Ref | Expression |
---|---|
con3i.a | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
con3i | ⊢ (¬ 𝜓 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
2 | con3i.a | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | nsyl 618 | 1 ⊢ (¬ 𝜓 → ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 604 ax-in2 605 |
This theorem is referenced by: notnotnot 624 conax1 643 pm5.21ni 693 pm2.45 728 pm2.46 729 pm3.14 743 3ianorr 1291 nalequcoms 1497 equidqe 1512 nnal 1629 ax6blem 1630 hbnt 1633 naecoms 1704 euor2 2064 moexexdc 2090 baroco 2113 necon3ai 2376 necon3bi 2377 nnral 2447 eueq3dc 2886 difin 3344 indifdir 3363 difrab 3381 csbprc 3439 ifandc 3541 nelpri 3584 nelprd 3586 opprc 3762 opprc1 3763 opprc2 3764 notnotsnex 4147 eldifpw 4435 nlimsucg 4523 nfvres 5498 nfunsn 5499 ressnop0 5645 ovprc 5850 ovprc1 5851 ovprc2 5852 mapprc 6590 ixpprc 6657 ixp0 6669 fiprc 6753 fidceq 6807 unfiexmid 6855 difinfsnlem 7033 3nsssucpw1 7154 onntri51 7158 onntri52 7162 fzdcel 9924 bcpasc 10622 flodddiv4lt 11808 bj-nnan 13271 bj-nnst 13290 nninfsellemsuc 13546 |
Copyright terms: Public domain | W3C validator |