| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con3i | GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.) |
| Ref | Expression |
|---|---|
| con3i.a | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| con3i | ⊢ (¬ 𝜓 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
| 2 | con3i.a | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | nsyl 629 | 1 ⊢ (¬ 𝜓 → ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: notnotnot 635 conax1 654 pm5.21ni 704 pm2.45 739 pm2.46 740 pm3.14 754 3ianorr 1321 nalequcoms 1539 equidqe 1554 nnal 1671 ax6blem 1672 hbnt 1675 naecoms 1746 euor2 2111 moexexdc 2137 baroco 2160 necon3ai 2424 necon3bi 2425 nnral 2495 eueq3dc 2946 difin 3409 indifdir 3428 difrab 3446 csbprc 3505 ifandc 3609 nelpri 3656 nelprd 3658 opprc 3839 opprc1 3840 opprc2 3841 notnotsnex 4230 eldifpw 4522 nlimsucg 4612 nfvres 5604 nfunsn 5605 ressnop0 5755 ovprc 5970 ovprc1 5971 ovprc2 5972 mapprc 6729 ixpprc 6796 ixp0 6808 fiprc 6892 fidceq 6948 unfiexmid 6997 difinfsnlem 7183 3nsssucpw1 7330 onntri51 7334 onntri52 7338 fzdcel 10144 bcpasc 10892 flodddiv4lt 12168 bj-nnan 15536 bj-imnimnn 15538 nnnotnotr 15790 nninfsellemsuc 15813 |
| Copyright terms: Public domain | W3C validator |