Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nnor | GIF version |
Description: Double negation of a disjunction in terms of implication. (Contributed by BJ, 9-Oct-2019.) |
Ref | Expression |
---|---|
bj-nnor | ⊢ (¬ ¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → ¬ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioran 747 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
2 | 1 | notbii 663 | . 2 ⊢ (¬ ¬ (𝜑 ∨ 𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
3 | imnan 685 | . 2 ⊢ ((¬ 𝜑 → ¬ ¬ 𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓)) | |
4 | 2, 3 | bitr4i 186 | 1 ⊢ (¬ ¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → ¬ ¬ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bj-nndcALT 13793 |
Copyright terms: Public domain | W3C validator |