Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nnor GIF version

Theorem bj-nnor 13256
Description: Double negation of a disjunction in terms of implication. (Contributed by BJ, 9-Oct-2019.)
Assertion
Ref Expression
bj-nnor (¬ ¬ (𝜑𝜓) ↔ (¬ 𝜑 → ¬ ¬ 𝜓))

Proof of Theorem bj-nnor
StepHypRef Expression
1 ioran 742 . . 3 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))
21notbii 658 . 2 (¬ ¬ (𝜑𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓))
3 imnan 680 . 2 ((¬ 𝜑 → ¬ ¬ 𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓))
42, 3bitr4i 186 1 (¬ ¬ (𝜑𝜓) ↔ (¬ 𝜑 → ¬ ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  bj-nndcALT  13276
  Copyright terms: Public domain W3C validator