| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nnor | GIF version | ||
| Description: Double negation of a disjunction in terms of implication. (Contributed by BJ, 9-Oct-2019.) |
| Ref | Expression |
|---|---|
| bj-nnor | ⊢ (¬ ¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → ¬ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioran 753 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
| 2 | 1 | notbii 669 | . 2 ⊢ (¬ ¬ (𝜑 ∨ 𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
| 3 | imnan 691 | . 2 ⊢ ((¬ 𝜑 → ¬ ¬ 𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓)) | |
| 4 | 2, 3 | bitr4i 187 | 1 ⊢ (¬ ¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → ¬ ¬ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bj-nndcALT 15414 |
| Copyright terms: Public domain | W3C validator |