ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con3rr3 GIF version

Theorem con3rr3 623
Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.)
Hypothesis
Ref Expression
con3rr3.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
con3rr3 𝜒 → (𝜑 → ¬ 𝜓))

Proof of Theorem con3rr3
StepHypRef Expression
1 con3rr3.1 . . 3 (𝜑 → (𝜓𝜒))
21con3d 621 . 2 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
32com12 30 1 𝜒 → (𝜑 → ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 604  ax-in2 605
This theorem is referenced by:  imnan  680  snnen2og  6805  bj-nnim  13353
  Copyright terms: Public domain W3C validator