Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nnnotnotr GIF version

Theorem nnnotnotr 13713
Description: Double negation of double negation elimination. Suggested by an online post by Martin Escardo. Although this statement resembles nnexmid 840, it can be proved with reference only to implication and negation (that is, without use of disjunction). (Contributed by Jim Kingdon, 21-Oct-2024.)
Assertion
Ref Expression
nnnotnotr ¬ ¬ (¬ ¬ 𝜑𝜑)

Proof of Theorem nnnotnotr
StepHypRef Expression
1 conax1 643 . 2 (¬ (¬ ¬ 𝜑𝜑) → ¬ 𝜑)
2 pm2.24 611 . . 3 𝜑 → (¬ ¬ 𝜑𝜑))
32con3i 622 . 2 (¬ (¬ ¬ 𝜑𝜑) → ¬ ¬ 𝜑)
41, 3pm2.65i 629 1 ¬ ¬ (¬ ¬ 𝜑𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 604  ax-in2 605
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator