Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > camestres | GIF version |
Description: "Camestres", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and no 𝜒 is 𝜓, therefore no 𝜒 is 𝜑. (In Aristotelian notation, AEE-2: PaM and SeM therefore SeP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.) |
Ref | Expression |
---|---|
camestres.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
camestres.min | ⊢ ∀𝑥(𝜒 → ¬ 𝜓) |
Ref | Expression |
---|---|
camestres | ⊢ ∀𝑥(𝜒 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | camestres.min | . . . 4 ⊢ ∀𝑥(𝜒 → ¬ 𝜓) | |
2 | 1 | spi 1513 | . . 3 ⊢ (𝜒 → ¬ 𝜓) |
3 | camestres.maj | . . . 4 ⊢ ∀𝑥(𝜑 → 𝜓) | |
4 | 3 | spi 1513 | . . 3 ⊢ (𝜑 → 𝜓) |
5 | 2, 4 | nsyl 618 | . 2 ⊢ (𝜒 → ¬ 𝜑) |
6 | 5 | ax-gen 1426 | 1 ⊢ ∀𝑥(𝜒 → ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 604 ax-in2 605 ax-gen 1426 ax-4 1487 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |