Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > festino | GIF version |
Description: "Festino", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, and some 𝜒 is 𝜓, therefore some 𝜒 is not 𝜑. (In Aristotelian notation, EIO-2: PeM and SiM therefore SoP.) (Contributed by David A. Wheeler, 25-Nov-2016.) |
Ref | Expression |
---|---|
festino.maj | ⊢ ∀𝑥(𝜑 → ¬ 𝜓) |
festino.min | ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
Ref | Expression |
---|---|
festino | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | festino.min | . 2 ⊢ ∃𝑥(𝜒 ∧ 𝜓) | |
2 | festino.maj | . . . . 5 ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | |
3 | 2 | spi 1529 | . . . 4 ⊢ (𝜑 → ¬ 𝜓) |
4 | 3 | con2i 622 | . . 3 ⊢ (𝜓 → ¬ 𝜑) |
5 | 4 | anim2i 340 | . 2 ⊢ ((𝜒 ∧ 𝜓) → (𝜒 ∧ ¬ 𝜑)) |
6 | 1, 5 | eximii 1595 | 1 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∀wal 1346 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |