ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nsyl GIF version

Theorem nsyl 631
Description: A negated syllogism inference. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 2-Mar-2013.)
Hypotheses
Ref Expression
nsyl.1 (𝜑 → ¬ 𝜓)
nsyl.2 (𝜒𝜓)
Assertion
Ref Expression
nsyl (𝜑 → ¬ 𝜒)

Proof of Theorem nsyl
StepHypRef Expression
1 nsyl.1 . . 3 (𝜑 → ¬ 𝜓)
2 nsyl.2 . . 3 (𝜒𝜓)
31, 2nsyl3 629 . 2 (𝜒 → ¬ 𝜑)
43con2i 630 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 617  ax-in2 618
This theorem is referenced by:  con3i  635  pm4.52im  755  intnand  936  intnanrd  937  intn3an1d  1390  intn3an2d  1391  intn3an3d  1392  camestres  2183  camestros  2187  calemes  2194  calemos  2197  unssin  3443  inssun  3444  onsucelsucexmid  4619  funun  5358  pwuninel2  6418  swoer  6698  swoord1  6699  swoord2  6700  ssfirab  7086  djune  7233  exmidaclem  7378  sucpw1nss3  7408  onntri35  7410  onntri45  7414  elnnz  9444  lbioog  10097  ubioog  10098  fzneuz  10285  fzodisj  10364  fzodisjsn  10368  infssuzex  10440  fxnn0nninf  10648  zfz1isolemiso  11048  swrd0g  11178  infpnlem1  12868  exmidunben  12983  lgsdir2lem2  15693  2lgslem3  15765
  Copyright terms: Public domain W3C validator