Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nsyl | GIF version |
Description: A negated syllogism inference. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 2-Mar-2013.) |
Ref | Expression |
---|---|
nsyl.1 | ⊢ (𝜑 → ¬ 𝜓) |
nsyl.2 | ⊢ (𝜒 → 𝜓) |
Ref | Expression |
---|---|
nsyl | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyl.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | nsyl.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
3 | 1, 2 | nsyl3 616 | . 2 ⊢ (𝜒 → ¬ 𝜑) |
4 | 3 | con2i 617 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 604 ax-in2 605 |
This theorem is referenced by: con3i 622 pm4.52im 740 intnand 921 intnanrd 922 camestres 2119 camestros 2123 calemes 2130 calemos 2133 unssin 3361 inssun 3362 onsucelsucexmid 4507 funun 5232 pwuninel2 6250 swoer 6529 swoord1 6530 swoord2 6531 ssfirab 6899 djune 7043 exmidaclem 7164 sucpw1nss3 7191 onntri35 7193 onntri45 7197 elnnz 9201 lbioog 9849 ubioog 9850 fzneuz 10036 fzodisj 10113 fxnn0nninf 10373 zfz1isolemiso 10752 infssuzex 11882 infpnlem1 12289 exmidunben 12359 lgsdir2lem2 13570 |
Copyright terms: Public domain | W3C validator |