![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nsyl | GIF version |
Description: A negated syllogism inference. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 2-Mar-2013.) |
Ref | Expression |
---|---|
nsyl.1 | ⊢ (𝜑 → ¬ 𝜓) |
nsyl.2 | ⊢ (𝜒 → 𝜓) |
Ref | Expression |
---|---|
nsyl | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyl.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | nsyl.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
3 | 1, 2 | nsyl3 627 | . 2 ⊢ (𝜒 → ¬ 𝜑) |
4 | 3 | con2i 628 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
This theorem is referenced by: con3i 633 pm4.52im 751 intnand 932 intnanrd 933 camestres 2147 camestros 2151 calemes 2158 calemos 2161 unssin 3398 inssun 3399 onsucelsucexmid 4562 funun 5298 pwuninel2 6335 swoer 6615 swoord1 6616 swoord2 6617 ssfirab 6990 djune 7137 exmidaclem 7268 sucpw1nss3 7295 onntri35 7297 onntri45 7301 elnnz 9327 lbioog 9979 ubioog 9980 fzneuz 10167 fzodisj 10245 fxnn0nninf 10510 zfz1isolemiso 10910 infssuzex 12086 infpnlem1 12497 exmidunben 12583 lgsdir2lem2 15145 |
Copyright terms: Public domain | W3C validator |