| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nsyl | GIF version | ||
| Description: A negated syllogism inference. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 2-Mar-2013.) |
| Ref | Expression |
|---|---|
| nsyl.1 | ⊢ (𝜑 → ¬ 𝜓) |
| nsyl.2 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| nsyl | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | nsyl.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 3 | 1, 2 | nsyl3 627 | . 2 ⊢ (𝜒 → ¬ 𝜑) |
| 4 | 3 | con2i 628 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: con3i 633 pm4.52im 752 intnand 933 intnanrd 934 intn3an1d 1368 intn3an2d 1369 intn3an3d 1370 camestres 2160 camestros 2164 calemes 2171 calemos 2174 unssin 3416 inssun 3417 onsucelsucexmid 4585 funun 5323 pwuninel2 6380 swoer 6660 swoord1 6661 swoord2 6662 ssfirab 7047 djune 7194 exmidaclem 7335 sucpw1nss3 7362 onntri35 7364 onntri45 7368 elnnz 9397 lbioog 10050 ubioog 10051 fzneuz 10238 fzodisj 10317 fzodisjsn 10321 infssuzex 10393 fxnn0nninf 10601 zfz1isolemiso 11001 swrd0g 11131 infpnlem1 12752 exmidunben 12867 lgsdir2lem2 15576 2lgslem3 15648 |
| Copyright terms: Public domain | W3C validator |