| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nsyl | GIF version | ||
| Description: A negated syllogism inference. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 2-Mar-2013.) |
| Ref | Expression |
|---|---|
| nsyl.1 | ⊢ (𝜑 → ¬ 𝜓) |
| nsyl.2 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| nsyl | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | nsyl.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 3 | 1, 2 | nsyl3 627 | . 2 ⊢ (𝜒 → ¬ 𝜑) |
| 4 | 3 | con2i 628 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: con3i 633 pm4.52im 751 intnand 932 intnanrd 933 camestres 2150 camestros 2154 calemes 2161 calemos 2164 unssin 3403 inssun 3404 onsucelsucexmid 4567 funun 5303 pwuninel2 6349 swoer 6629 swoord1 6630 swoord2 6631 ssfirab 7006 djune 7153 exmidaclem 7293 sucpw1nss3 7320 onntri35 7322 onntri45 7326 elnnz 9355 lbioog 10007 ubioog 10008 fzneuz 10195 fzodisj 10273 infssuzex 10342 fxnn0nninf 10550 zfz1isolemiso 10950 infpnlem1 12555 exmidunben 12670 lgsdir2lem2 15378 2lgslem3 15450 |
| Copyright terms: Public domain | W3C validator |