| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nsyl | GIF version | ||
| Description: A negated syllogism inference. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 2-Mar-2013.) |
| Ref | Expression |
|---|---|
| nsyl.1 | ⊢ (𝜑 → ¬ 𝜓) |
| nsyl.2 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| nsyl | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | nsyl.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 3 | 1, 2 | nsyl3 629 | . 2 ⊢ (𝜒 → ¬ 𝜑) |
| 4 | 3 | con2i 630 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: con3i 635 pm4.52im 755 intnand 936 intnanrd 937 intn3an1d 1390 intn3an2d 1391 intn3an3d 1392 camestres 2183 camestros 2187 calemes 2194 calemos 2197 unssin 3443 inssun 3444 onsucelsucexmid 4619 funun 5358 pwuninel2 6418 swoer 6698 swoord1 6699 swoord2 6700 ssfirab 7086 djune 7233 exmidaclem 7378 sucpw1nss3 7408 onntri35 7410 onntri45 7414 elnnz 9444 lbioog 10097 ubioog 10098 fzneuz 10285 fzodisj 10364 fzodisjsn 10368 infssuzex 10440 fxnn0nninf 10648 zfz1isolemiso 11048 swrd0g 11178 infpnlem1 12868 exmidunben 12983 lgsdir2lem2 15693 2lgslem3 15765 |
| Copyright terms: Public domain | W3C validator |