![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nsyl | GIF version |
Description: A negated syllogism inference. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 2-Mar-2013.) |
Ref | Expression |
---|---|
nsyl.1 | ⊢ (𝜑 → ¬ 𝜓) |
nsyl.2 | ⊢ (𝜒 → 𝜓) |
Ref | Expression |
---|---|
nsyl | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyl.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | nsyl.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
3 | 1, 2 | nsyl3 626 | . 2 ⊢ (𝜒 → ¬ 𝜑) |
4 | 3 | con2i 627 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 614 ax-in2 615 |
This theorem is referenced by: con3i 632 pm4.52im 750 intnand 931 intnanrd 932 camestres 2131 camestros 2135 calemes 2142 calemos 2145 unssin 3376 inssun 3377 onsucelsucexmid 4531 funun 5262 pwuninel2 6285 swoer 6565 swoord1 6566 swoord2 6567 ssfirab 6935 djune 7079 exmidaclem 7209 sucpw1nss3 7236 onntri35 7238 onntri45 7242 elnnz 9265 lbioog 9915 ubioog 9916 fzneuz 10103 fzodisj 10180 fxnn0nninf 10440 zfz1isolemiso 10821 infssuzex 11952 infpnlem1 12359 exmidunben 12429 lgsdir2lem2 14515 |
Copyright terms: Public domain | W3C validator |