ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nsyl GIF version

Theorem nsyl 623
Description: A negated syllogism inference. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 2-Mar-2013.)
Hypotheses
Ref Expression
nsyl.1 (𝜑 → ¬ 𝜓)
nsyl.2 (𝜒𝜓)
Assertion
Ref Expression
nsyl (𝜑 → ¬ 𝜒)

Proof of Theorem nsyl
StepHypRef Expression
1 nsyl.1 . . 3 (𝜑 → ¬ 𝜓)
2 nsyl.2 . . 3 (𝜒𝜓)
31, 2nsyl3 621 . 2 (𝜒 → ¬ 𝜑)
43con2i 622 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 609  ax-in2 610
This theorem is referenced by:  con3i  627  pm4.52im  745  intnand  926  intnanrd  927  camestres  2124  camestros  2128  calemes  2135  calemos  2138  unssin  3366  inssun  3367  onsucelsucexmid  4514  funun  5242  pwuninel2  6261  swoer  6541  swoord1  6542  swoord2  6543  ssfirab  6911  djune  7055  exmidaclem  7185  sucpw1nss3  7212  onntri35  7214  onntri45  7218  elnnz  9222  lbioog  9870  ubioog  9871  fzneuz  10057  fzodisj  10134  fxnn0nninf  10394  zfz1isolemiso  10774  infssuzex  11904  infpnlem1  12311  exmidunben  12381  lgsdir2lem2  13724
  Copyright terms: Public domain W3C validator