ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nsyl GIF version

Theorem nsyl 598
Description: A negated syllogism inference. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 2-Mar-2013.)
Hypotheses
Ref Expression
nsyl.1 (𝜑 → ¬ 𝜓)
nsyl.2 (𝜒𝜓)
Assertion
Ref Expression
nsyl (𝜑 → ¬ 𝜒)

Proof of Theorem nsyl
StepHypRef Expression
1 nsyl.1 . . 3 (𝜑 → ¬ 𝜓)
2 nsyl.2 . . 3 (𝜒𝜓)
31, 2nsyl3 596 . 2 (𝜒 → ¬ 𝜑)
43con2i 597 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-in1 584  ax-in2 585
This theorem is referenced by:  con3i  602  jcn  621  pm4.52im  847  intnand  884  intnanrd  885  camestres  2065  camestros  2069  calemes  2076  calemos  2079  unssin  3262  inssun  3263  onsucelsucexmid  4383  funun  5103  pwuninel2  6109  swoer  6387  swoord1  6388  swoord2  6389  ssfirab  6750  djune  6878  elnnz  8916  lbioog  9537  ubioog  9538  fzneuz  9722  fzodisj  9796  fxnn0nninf  10052  zfz1isolemiso  10423  infssuzex  11437  exmidunben  11731
  Copyright terms: Public domain W3C validator