| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nsyl | GIF version | ||
| Description: A negated syllogism inference. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 2-Mar-2013.) |
| Ref | Expression |
|---|---|
| nsyl.1 | ⊢ (𝜑 → ¬ 𝜓) |
| nsyl.2 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| nsyl | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | nsyl.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 3 | 1, 2 | nsyl3 629 | . 2 ⊢ (𝜒 → ¬ 𝜑) |
| 4 | 3 | con2i 630 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: con3i 635 pm4.52im 755 intnand 936 intnanrd 937 intn3an1d 1390 intn3an2d 1391 intn3an3d 1392 camestres 2183 camestros 2187 calemes 2194 calemos 2197 unssin 3443 inssun 3444 onsucelsucexmid 4622 funun 5362 pwuninel2 6434 swoer 6716 swoord1 6717 swoord2 6718 ssfirab 7106 djune 7253 exmidaclem 7398 sucpw1nss3 7428 onntri35 7430 onntri45 7434 elnnz 9464 lbioog 10117 ubioog 10118 fzneuz 10305 fzodisj 10384 fzodisjsn 10388 infssuzex 10461 fxnn0nninf 10669 zfz1isolemiso 11069 swrd0g 11200 infpnlem1 12890 exmidunben 13005 lgsdir2lem2 15716 2lgslem3 15788 |
| Copyright terms: Public domain | W3C validator |