| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nsyl | GIF version | ||
| Description: A negated syllogism inference. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 2-Mar-2013.) |
| Ref | Expression |
|---|---|
| nsyl.1 | ⊢ (𝜑 → ¬ 𝜓) |
| nsyl.2 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| nsyl | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | nsyl.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 3 | 1, 2 | nsyl3 627 | . 2 ⊢ (𝜒 → ¬ 𝜑) |
| 4 | 3 | con2i 628 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: con3i 633 pm4.52im 751 intnand 932 intnanrd 933 camestres 2150 camestros 2154 calemes 2161 calemos 2164 unssin 3403 inssun 3404 onsucelsucexmid 4567 funun 5303 pwuninel2 6349 swoer 6629 swoord1 6630 swoord2 6631 ssfirab 7006 djune 7153 exmidaclem 7291 sucpw1nss3 7318 onntri35 7320 onntri45 7324 elnnz 9353 lbioog 10005 ubioog 10006 fzneuz 10193 fzodisj 10271 infssuzex 10340 fxnn0nninf 10548 zfz1isolemiso 10948 infpnlem1 12553 exmidunben 12668 lgsdir2lem2 15354 2lgslem3 15426 |
| Copyright terms: Public domain | W3C validator |