| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ccased | GIF version | ||
| Description: Deduction for combining cases. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| ccased.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜂)) |
| ccased.2 | ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜂)) |
| ccased.3 | ⊢ (𝜑 → ((𝜓 ∧ 𝜏) → 𝜂)) |
| ccased.4 | ⊢ (𝜑 → ((𝜃 ∧ 𝜏) → 𝜂)) |
| Ref | Expression |
|---|---|
| ccased | ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∧ (𝜒 ∨ 𝜏)) → 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccased.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜂)) | |
| 2 | 1 | com12 30 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜂)) |
| 3 | ccased.2 | . . . 4 ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜂)) | |
| 4 | 3 | com12 30 | . . 3 ⊢ ((𝜃 ∧ 𝜒) → (𝜑 → 𝜂)) |
| 5 | ccased.3 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜏) → 𝜂)) | |
| 6 | 5 | com12 30 | . . 3 ⊢ ((𝜓 ∧ 𝜏) → (𝜑 → 𝜂)) |
| 7 | ccased.4 | . . . 4 ⊢ (𝜑 → ((𝜃 ∧ 𝜏) → 𝜂)) | |
| 8 | 7 | com12 30 | . . 3 ⊢ ((𝜃 ∧ 𝜏) → (𝜑 → 𝜂)) |
| 9 | 2, 4, 6, 8 | ccase 966 | . 2 ⊢ (((𝜓 ∨ 𝜃) ∧ (𝜒 ∨ 𝜏)) → (𝜑 → 𝜂)) |
| 10 | 9 | com12 30 | 1 ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∧ (𝜒 ∨ 𝜏)) → 𝜂)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: zmulcl 9379 gcdabs 12155 lcmabs 12244 mulgass 13289 lgsdir2lem5 15273 |
| Copyright terms: Public domain | W3C validator |