Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ccase GIF version

Theorem ccase 949
 Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Wolf Lammen, 6-Jan-2013.)
Hypotheses
Ref Expression
ccase.1 ((𝜑𝜓) → 𝜏)
ccase.2 ((𝜒𝜓) → 𝜏)
ccase.3 ((𝜑𝜃) → 𝜏)
ccase.4 ((𝜒𝜃) → 𝜏)
Assertion
Ref Expression
ccase (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)

Proof of Theorem ccase
StepHypRef Expression
1 ccase.1 . . 3 ((𝜑𝜓) → 𝜏)
2 ccase.2 . . 3 ((𝜒𝜓) → 𝜏)
31, 2jaoian 785 . 2 (((𝜑𝜒) ∧ 𝜓) → 𝜏)
4 ccase.3 . . 3 ((𝜑𝜃) → 𝜏)
5 ccase.4 . . 3 ((𝜒𝜃) → 𝜏)
64, 5jaoian 785 . 2 (((𝜑𝜒) ∧ 𝜃) → 𝜏)
73, 6jaodan 787 1 (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∨ wo 698 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699 This theorem depends on definitions:  df-bi 116 This theorem is referenced by:  ccased  950  ccase2  951  undif3ss  3368  prodmodc  11457  nn0gcdsq  12054
 Copyright terms: Public domain W3C validator