ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zmulcl GIF version

Theorem zmulcl 9220
Description: Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.)
Assertion
Ref Expression
zmulcl ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)

Proof of Theorem zmulcl
StepHypRef Expression
1 elznn0 9182 . 2 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0)))
2 elznn0 9182 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
3 nn0mulcl 9126 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0)
43orcd 723 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))
54a1i 9 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))
6 remulcl 7860 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 · 𝑁) ∈ ℝ)
75, 6jctild 314 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))))
8 nn0mulcl 9126 . . . . . . . . 9 ((-𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (-𝑀 · 𝑁) ∈ ℕ0)
9 recn 7865 . . . . . . . . . . 11 (𝑀 ∈ ℝ → 𝑀 ∈ ℂ)
10 recn 7865 . . . . . . . . . . 11 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
11 mulneg1 8270 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁))
129, 10, 11syl2an 287 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁))
1312eleq1d 2226 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 · 𝑁) ∈ ℕ0 ↔ -(𝑀 · 𝑁) ∈ ℕ0))
148, 13syl5ib 153 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → -(𝑀 · 𝑁) ∈ ℕ0))
15 olc 701 . . . . . . . 8 (-(𝑀 · 𝑁) ∈ ℕ0 → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))
1614, 15syl6 33 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))
1716, 6jctild 314 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))))
18 nn0mulcl 9126 . . . . . . . . 9 ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (𝑀 · -𝑁) ∈ ℕ0)
19 mulneg2 8271 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 · -𝑁) = -(𝑀 · 𝑁))
209, 10, 19syl2an 287 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 · -𝑁) = -(𝑀 · 𝑁))
2120eleq1d 2226 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 · -𝑁) ∈ ℕ0 ↔ -(𝑀 · 𝑁) ∈ ℕ0))
2218, 21syl5ib 153 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → -(𝑀 · 𝑁) ∈ ℕ0))
2322, 15syl6 33 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))
2423, 6jctild 314 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))))
25 nn0mulcl 9126 . . . . . . . . 9 ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (-𝑀 · -𝑁) ∈ ℕ0)
26 mul2neg 8273 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝑀 · -𝑁) = (𝑀 · 𝑁))
279, 10, 26syl2an 287 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (-𝑀 · -𝑁) = (𝑀 · 𝑁))
2827eleq1d 2226 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 · -𝑁) ∈ ℕ0 ↔ (𝑀 · 𝑁) ∈ ℕ0))
2925, 28syl5ib 153 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0))
30 orc 702 . . . . . . . 8 ((𝑀 · 𝑁) ∈ ℕ0 → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))
3129, 30syl6 33 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))
3231, 6jctild 314 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))))
337, 17, 24, 32ccased 950 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))))
34 elznn0 9182 . . . . 5 ((𝑀 · 𝑁) ∈ ℤ ↔ ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))
3533, 34syl6ibr 161 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → (𝑀 · 𝑁) ∈ ℤ))
3635imp 123 . . 3 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ ((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) → (𝑀 · 𝑁) ∈ ℤ)
3736an4s 578 . 2 (((𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0)) ∧ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) → (𝑀 · 𝑁) ∈ ℤ)
381, 2, 37syl2anb 289 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698   = wceq 1335  wcel 2128  (class class class)co 5824  cc 7730  cr 7731   · cmul 7737  -cneg 8047  0cn0 9090  cz 9167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-setind 4496  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-mulrcl 7831  ax-addcom 7832  ax-mulcom 7833  ax-addass 7834  ax-mulass 7835  ax-distr 7836  ax-i2m1 7837  ax-1rid 7839  ax-0id 7840  ax-rnegex 7841  ax-cnre 7843
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-id 4253  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-iota 5135  df-fun 5172  df-fv 5178  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-sub 8048  df-neg 8049  df-inn 8834  df-n0 9091  df-z 9168
This theorem is referenced by:  zdivmul  9254  msqznn  9264  zmulcld  9292  uz2mulcl  9519  qaddcl  9544  qmulcl  9546  qreccl  9551  fzctr  10032  flqmulnn0  10198  zexpcl  10434  iexpcyc  10523  zesq  10536  fprodzcl  11506  dvdsmul1  11708  dvdsmul2  11709  muldvds1  11711  muldvds2  11712  dvdscmul  11713  dvdsmulc  11714  dvds2ln  11719  dvdstr  11723  dvdsmultr1  11724  dvdsmultr2  11726  3dvdsdec  11755  3dvds2dec  11756  oexpneg  11767  mulsucdiv2z  11775  divalgb  11815  divalgmod  11817  ndvdsi  11823  absmulgcd  11900  gcdmultiple  11903  gcdmultiplez  11904  dvdsmulgcd  11908  rpmulgcd  11909  lcmcllem  11943  rpmul  11974  cncongr1  11979  cncongr2  11980
  Copyright terms: Public domain W3C validator