Proof of Theorem lgsdir2lem5
| Step | Hyp | Ref
 | Expression | 
| 1 |   | 8nn 9158 | 
. . . . . . . . 9
⊢ 8 ∈
ℕ | 
| 2 |   | zmodcl 10436 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 8 ∈
ℕ) → (𝐴 mod 8)
∈ ℕ0) | 
| 3 | 1, 2 | mpan2 425 | 
. . . . . . . 8
⊢ (𝐴 ∈ ℤ → (𝐴 mod 8) ∈
ℕ0) | 
| 4 | 3 | adantr 276 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 mod 8) ∈
ℕ0) | 
| 5 |   | elprg 3642 | 
. . . . . . 7
⊢ ((𝐴 mod 8) ∈
ℕ0 → ((𝐴 mod 8) ∈ {3, 5} ↔ ((𝐴 mod 8) = 3 ∨ (𝐴 mod 8) = 5))) | 
| 6 | 4, 5 | syl 14 | 
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 8) ∈ {3, 5} ↔
((𝐴 mod 8) = 3 ∨ (𝐴 mod 8) = 5))) | 
| 7 |   | zmodcl 10436 | 
. . . . . . . . 9
⊢ ((𝐵 ∈ ℤ ∧ 8 ∈
ℕ) → (𝐵 mod 8)
∈ ℕ0) | 
| 8 | 1, 7 | mpan2 425 | 
. . . . . . . 8
⊢ (𝐵 ∈ ℤ → (𝐵 mod 8) ∈
ℕ0) | 
| 9 | 8 | adantl 277 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 mod 8) ∈
ℕ0) | 
| 10 |   | elprg 3642 | 
. . . . . . 7
⊢ ((𝐵 mod 8) ∈
ℕ0 → ((𝐵 mod 8) ∈ {3, 5} ↔ ((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5))) | 
| 11 | 9, 10 | syl 14 | 
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐵 mod 8) ∈ {3, 5} ↔
((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5))) | 
| 12 | 6, 11 | anbi12d 473 | 
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) ∈ {3, 5} ∧
(𝐵 mod 8) ∈ {3, 5})
↔ (((𝐴 mod 8) = 3 ∨
(𝐴 mod 8) = 5) ∧
((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5)))) | 
| 13 |   | simpll 527 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 𝐴 ∈
ℤ) | 
| 14 |   | 3z 9355 | 
. . . . . . . . . 10
⊢ 3 ∈
ℤ | 
| 15 | 14 | a1i 9 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 3 ∈
ℤ) | 
| 16 |   | simplr 528 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 𝐵 ∈
ℤ) | 
| 17 |   | nnq 9707 | 
. . . . . . . . . . 11
⊢ (8 ∈
ℕ → 8 ∈ ℚ) | 
| 18 | 1, 17 | ax-mp 5 | 
. . . . . . . . . 10
⊢ 8 ∈
ℚ | 
| 19 | 18 | a1i 9 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 8 ∈
ℚ) | 
| 20 |   | 8pos 9093 | 
. . . . . . . . . 10
⊢ 0 <
8 | 
| 21 | 20 | a1i 9 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 0 <
8) | 
| 22 |   | simprl 529 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = 3) | 
| 23 |   | lgsdir2lem1 15269 | 
. . . . . . . . . . . 12
⊢ (((1 mod
8) = 1 ∧ (-1 mod 8) = 7) ∧ ((3 mod 8) = 3 ∧ (-3 mod 8) =
5)) | 
| 24 | 23 | simpri 113 | 
. . . . . . . . . . 11
⊢ ((3 mod
8) = 3 ∧ (-3 mod 8) = 5) | 
| 25 | 24 | simpli 111 | 
. . . . . . . . . 10
⊢ (3 mod 8)
= 3 | 
| 26 | 22, 25 | eqtr4di 2247 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = (3 mod
8)) | 
| 27 |   | simprr 531 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = 3) | 
| 28 | 27, 25 | eqtr4di 2247 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = (3 mod
8)) | 
| 29 | 13, 15, 16, 15, 19, 21, 26, 28 | modqmul12d 10470 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → ((𝐴 · 𝐵) mod 8) = ((3 · 3) mod
8)) | 
| 30 | 29 | orcd 734 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨
((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8))) | 
| 31 | 30 | ex 115 | 
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨
((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8)))) | 
| 32 |   | simpll 527 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 𝐴 ∈
ℤ) | 
| 33 |   | znegcl 9357 | 
. . . . . . . . . . 11
⊢ (3 ∈
ℤ → -3 ∈ ℤ) | 
| 34 | 14, 33 | mp1i 10 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → -3 ∈
ℤ) | 
| 35 |   | simplr 528 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 𝐵 ∈
ℤ) | 
| 36 | 14 | a1i 9 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 3 ∈
ℤ) | 
| 37 | 18 | a1i 9 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 8 ∈
ℚ) | 
| 38 | 20 | a1i 9 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 0 <
8) | 
| 39 |   | simprl 529 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = 5) | 
| 40 | 24 | simpri 113 | 
. . . . . . . . . . 11
⊢ (-3 mod
8) = 5 | 
| 41 | 39, 40 | eqtr4di 2247 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = (-3 mod
8)) | 
| 42 |   | simprr 531 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = 3) | 
| 43 | 42, 25 | eqtr4di 2247 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = (3 mod
8)) | 
| 44 | 32, 34, 35, 36, 37, 38, 41, 43 | modqmul12d 10470 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → ((𝐴 · 𝐵) mod 8) = ((-3 · 3) mod
8)) | 
| 45 |   | 3cn 9065 | 
. . . . . . . . . . 11
⊢ 3 ∈
ℂ | 
| 46 | 45, 45 | mulneg1i 8430 | 
. . . . . . . . . 10
⊢ (-3
· 3) = -(3 · 3) | 
| 47 | 46 | oveq1i 5932 | 
. . . . . . . . 9
⊢ ((-3
· 3) mod 8) = (-(3 · 3) mod 8) | 
| 48 | 44, 47 | eqtrdi 2245 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8)) | 
| 49 | 48 | olcd 735 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨
((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8))) | 
| 50 | 49 | ex 115 | 
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨
((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8)))) | 
| 51 |   | simpll 527 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 𝐴 ∈
ℤ) | 
| 52 | 14 | a1i 9 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 3 ∈
ℤ) | 
| 53 |   | simplr 528 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 𝐵 ∈
ℤ) | 
| 54 | 14, 33 | mp1i 10 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → -3 ∈
ℤ) | 
| 55 | 18 | a1i 9 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 8 ∈
ℚ) | 
| 56 | 20 | a1i 9 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 0 <
8) | 
| 57 |   | simprl 529 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = 3) | 
| 58 | 57, 25 | eqtr4di 2247 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = (3 mod
8)) | 
| 59 |   | simprr 531 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = 5) | 
| 60 | 59, 40 | eqtr4di 2247 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = (-3 mod
8)) | 
| 61 | 51, 52, 53, 54, 55, 56, 58, 60 | modqmul12d 10470 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = ((3 · -3) mod
8)) | 
| 62 | 45, 45 | mulneg2i 8431 | 
. . . . . . . . . 10
⊢ (3
· -3) = -(3 · 3) | 
| 63 | 62 | oveq1i 5932 | 
. . . . . . . . 9
⊢ ((3
· -3) mod 8) = (-(3 · 3) mod 8) | 
| 64 | 61, 63 | eqtrdi 2245 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8)) | 
| 65 | 64 | olcd 735 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨
((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8))) | 
| 66 | 65 | ex 115 | 
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨
((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8)))) | 
| 67 |   | simpll 527 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 𝐴 ∈
ℤ) | 
| 68 | 14, 33 | mp1i 10 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → -3 ∈
ℤ) | 
| 69 |   | simplr 528 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 𝐵 ∈
ℤ) | 
| 70 | 18 | a1i 9 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 8 ∈
ℚ) | 
| 71 | 20 | a1i 9 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 0 <
8) | 
| 72 |   | simprl 529 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = 5) | 
| 73 | 72, 40 | eqtr4di 2247 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = (-3 mod
8)) | 
| 74 |   | simprr 531 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = 5) | 
| 75 | 74, 40 | eqtr4di 2247 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = (-3 mod
8)) | 
| 76 | 67, 68, 69, 68, 70, 71, 73, 75 | modqmul12d 10470 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = ((-3 · -3) mod
8)) | 
| 77 | 45, 45 | mul2negi 8432 | 
. . . . . . . . . 10
⊢ (-3
· -3) = (3 · 3) | 
| 78 | 77 | oveq1i 5932 | 
. . . . . . . . 9
⊢ ((-3
· -3) mod 8) = ((3 · 3) mod 8) | 
| 79 | 76, 78 | eqtrdi 2245 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = ((3 · 3) mod
8)) | 
| 80 | 79 | orcd 734 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨
((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8))) | 
| 81 | 80 | ex 115 | 
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨
((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8)))) | 
| 82 | 31, 50, 66, 81 | ccased 967 | 
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
((((𝐴 mod 8) = 3 ∨
(𝐴 mod 8) = 5) ∧
((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨
((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8)))) | 
| 83 | 12, 82 | sylbid 150 | 
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) ∈ {3, 5} ∧
(𝐵 mod 8) ∈ {3, 5})
→ (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod
8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8)))) | 
| 84 | 83 | imp 124 | 
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧
(𝐵 mod 8) ∈ {3, 5}))
→ (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod
8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8))) | 
| 85 |   | simpll 527 | 
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧
(𝐵 mod 8) ∈ {3, 5}))
→ 𝐴 ∈
ℤ) | 
| 86 |   | simplr 528 | 
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧
(𝐵 mod 8) ∈ {3, 5}))
→ 𝐵 ∈
ℤ) | 
| 87 | 85, 86 | zmulcld 9454 | 
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧
(𝐵 mod 8) ∈ {3, 5}))
→ (𝐴 · 𝐵) ∈
ℤ) | 
| 88 | 1 | a1i 9 | 
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧
(𝐵 mod 8) ∈ {3, 5}))
→ 8 ∈ ℕ) | 
| 89 | 87, 88 | zmodcld 10437 | 
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧
(𝐵 mod 8) ∈ {3, 5}))
→ ((𝐴 · 𝐵) mod 8) ∈
ℕ0) | 
| 90 |   | elprg 3642 | 
. . . 4
⊢ (((𝐴 · 𝐵) mod 8) ∈ ℕ0 →
(((𝐴 · 𝐵) mod 8) ∈ {((3 · 3)
mod 8), (-(3 · 3) mod 8)} ↔ (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨
((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8)))) | 
| 91 | 89, 90 | syl 14 | 
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧
(𝐵 mod 8) ∈ {3, 5}))
→ (((𝐴 · 𝐵) mod 8) ∈ {((3 · 3)
mod 8), (-(3 · 3) mod 8)} ↔ (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨
((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8)))) | 
| 92 | 84, 91 | mpbird 167 | 
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧
(𝐵 mod 8) ∈ {3, 5}))
→ ((𝐴 · 𝐵) mod 8) ∈ {((3 · 3)
mod 8), (-(3 · 3) mod 8)}) | 
| 93 |   | df-9 9056 | 
. . . . . . . 8
⊢ 9 = (8 +
1) | 
| 94 |   | 8cn 9076 | 
. . . . . . . . 9
⊢ 8 ∈
ℂ | 
| 95 |   | ax-1cn 7972 | 
. . . . . . . . 9
⊢ 1 ∈
ℂ | 
| 96 | 94, 95 | addcomi 8170 | 
. . . . . . . 8
⊢ (8 + 1) =
(1 + 8) | 
| 97 | 93, 96 | eqtri 2217 | 
. . . . . . 7
⊢ 9 = (1 +
8) | 
| 98 |   | 3t3e9 9148 | 
. . . . . . 7
⊢ (3
· 3) = 9 | 
| 99 | 94 | mullidi 8029 | 
. . . . . . . 8
⊢ (1
· 8) = 8 | 
| 100 | 99 | oveq2i 5933 | 
. . . . . . 7
⊢ (1 + (1
· 8)) = (1 + 8) | 
| 101 | 97, 98, 100 | 3eqtr4i 2227 | 
. . . . . 6
⊢ (3
· 3) = (1 + (1 · 8)) | 
| 102 | 101 | oveq1i 5932 | 
. . . . 5
⊢ ((3
· 3) mod 8) = ((1 + (1 · 8)) mod 8) | 
| 103 |   | 1nn 9001 | 
. . . . . . 7
⊢ 1 ∈
ℕ | 
| 104 |   | nnq 9707 | 
. . . . . . 7
⊢ (1 ∈
ℕ → 1 ∈ ℚ) | 
| 105 | 103, 104 | ax-mp 5 | 
. . . . . 6
⊢ 1 ∈
ℚ | 
| 106 |   | 1z 9352 | 
. . . . . 6
⊢ 1 ∈
ℤ | 
| 107 |   | modqcyc 10451 | 
. . . . . 6
⊢ (((1
∈ ℚ ∧ 1 ∈ ℤ) ∧ (8 ∈ ℚ ∧ 0 < 8))
→ ((1 + (1 · 8)) mod 8) = (1 mod 8)) | 
| 108 | 105, 106,
18, 20, 107 | mp4an 427 | 
. . . . 5
⊢ ((1 + (1
· 8)) mod 8) = (1 mod 8) | 
| 109 | 102, 108 | eqtri 2217 | 
. . . 4
⊢ ((3
· 3) mod 8) = (1 mod 8) | 
| 110 | 23 | simpli 111 | 
. . . . 5
⊢ ((1 mod
8) = 1 ∧ (-1 mod 8) = 7) | 
| 111 | 110 | simpli 111 | 
. . . 4
⊢ (1 mod 8)
= 1 | 
| 112 | 109, 111 | eqtri 2217 | 
. . 3
⊢ ((3
· 3) mod 8) = 1 | 
| 113 |   | znegcl 9357 | 
. . . . . . . 8
⊢ (1 ∈
ℤ → -1 ∈ ℤ) | 
| 114 | 106, 113 | mp1i 10 | 
. . . . . . 7
⊢ (⊤
→ -1 ∈ ℤ) | 
| 115 |   | 3nn 9153 | 
. . . . . . . . . 10
⊢ 3 ∈
ℕ | 
| 116 | 115, 115 | nnmulcli 9012 | 
. . . . . . . . 9
⊢ (3
· 3) ∈ ℕ | 
| 117 | 116 | nnzi 9347 | 
. . . . . . . 8
⊢ (3
· 3) ∈ ℤ | 
| 118 | 117 | a1i 9 | 
. . . . . . 7
⊢ (⊤
→ (3 · 3) ∈ ℤ) | 
| 119 | 106 | a1i 9 | 
. . . . . . 7
⊢ (⊤
→ 1 ∈ ℤ) | 
| 120 | 18 | a1i 9 | 
. . . . . . 7
⊢ (⊤
→ 8 ∈ ℚ) | 
| 121 | 20 | a1i 9 | 
. . . . . . 7
⊢ (⊤
→ 0 < 8) | 
| 122 |   | eqidd 2197 | 
. . . . . . 7
⊢ (⊤
→ (-1 mod 8) = (-1 mod 8)) | 
| 123 | 109 | a1i 9 | 
. . . . . . 7
⊢ (⊤
→ ((3 · 3) mod 8) = (1 mod 8)) | 
| 124 | 114, 114,
118, 119, 120, 121, 122, 123 | modqmul12d 10470 | 
. . . . . 6
⊢ (⊤
→ ((-1 · (3 · 3)) mod 8) = ((-1 · 1) mod
8)) | 
| 125 | 124 | mptru 1373 | 
. . . . 5
⊢ ((-1
· (3 · 3)) mod 8) = ((-1 · 1) mod 8) | 
| 126 | 45, 45 | mulcli 8031 | 
. . . . . . 7
⊢ (3
· 3) ∈ ℂ | 
| 127 | 126 | mulm1i 8429 | 
. . . . . 6
⊢ (-1
· (3 · 3)) = -(3 · 3) | 
| 128 | 127 | oveq1i 5932 | 
. . . . 5
⊢ ((-1
· (3 · 3)) mod 8) = (-(3 · 3) mod 8) | 
| 129 | 95 | mulm1i 8429 | 
. . . . . 6
⊢ (-1
· 1) = -1 | 
| 130 | 129 | oveq1i 5932 | 
. . . . 5
⊢ ((-1
· 1) mod 8) = (-1 mod 8) | 
| 131 | 125, 128,
130 | 3eqtr3i 2225 | 
. . . 4
⊢ (-(3
· 3) mod 8) = (-1 mod 8) | 
| 132 | 110 | simpri 113 | 
. . . 4
⊢ (-1 mod
8) = 7 | 
| 133 | 131, 132 | eqtri 2217 | 
. . 3
⊢ (-(3
· 3) mod 8) = 7 | 
| 134 | 112, 133 | preq12i 3704 | 
. 2
⊢ {((3
· 3) mod 8), (-(3 · 3) mod 8)} = {1, 7} | 
| 135 | 92, 134 | eleqtrdi 2289 | 
1
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧
(𝐵 mod 8) ∈ {3, 5}))
→ ((𝐴 · 𝐵) mod 8) ∈ {1,
7}) |