ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir2lem5 GIF version

Theorem lgsdir2lem5 14100
Description: Lemma for lgsdir2 14101. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2lem5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})

Proof of Theorem lgsdir2lem5
StepHypRef Expression
1 8nn 9075 . . . . . . . . 9 8 ∈ ℕ
2 zmodcl 10330 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 8 ∈ ℕ) → (𝐴 mod 8) ∈ ℕ0)
31, 2mpan2 425 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 mod 8) ∈ ℕ0)
43adantr 276 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 mod 8) ∈ ℕ0)
5 elprg 3611 . . . . . . 7 ((𝐴 mod 8) ∈ ℕ0 → ((𝐴 mod 8) ∈ {3, 5} ↔ ((𝐴 mod 8) = 3 ∨ (𝐴 mod 8) = 5)))
64, 5syl 14 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 8) ∈ {3, 5} ↔ ((𝐴 mod 8) = 3 ∨ (𝐴 mod 8) = 5)))
7 zmodcl 10330 . . . . . . . . 9 ((𝐵 ∈ ℤ ∧ 8 ∈ ℕ) → (𝐵 mod 8) ∈ ℕ0)
81, 7mpan2 425 . . . . . . . 8 (𝐵 ∈ ℤ → (𝐵 mod 8) ∈ ℕ0)
98adantl 277 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 mod 8) ∈ ℕ0)
10 elprg 3611 . . . . . . 7 ((𝐵 mod 8) ∈ ℕ0 → ((𝐵 mod 8) ∈ {3, 5} ↔ ((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5)))
119, 10syl 14 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐵 mod 8) ∈ {3, 5} ↔ ((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5)))
126, 11anbi12d 473 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5}) ↔ (((𝐴 mod 8) = 3 ∨ (𝐴 mod 8) = 5) ∧ ((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5))))
13 simpll 527 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 𝐴 ∈ ℤ)
14 3z 9271 . . . . . . . . . 10 3 ∈ ℤ
1514a1i 9 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 3 ∈ ℤ)
16 simplr 528 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 𝐵 ∈ ℤ)
17 nnq 9622 . . . . . . . . . . 11 (8 ∈ ℕ → 8 ∈ ℚ)
181, 17ax-mp 5 . . . . . . . . . 10 8 ∈ ℚ
1918a1i 9 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 8 ∈ ℚ)
20 8pos 9011 . . . . . . . . . 10 0 < 8
2120a1i 9 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 0 < 8)
22 simprl 529 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = 3)
23 lgsdir2lem1 14096 . . . . . . . . . . . 12 (((1 mod 8) = 1 ∧ (-1 mod 8) = 7) ∧ ((3 mod 8) = 3 ∧ (-3 mod 8) = 5))
2423simpri 113 . . . . . . . . . . 11 ((3 mod 8) = 3 ∧ (-3 mod 8) = 5)
2524simpli 111 . . . . . . . . . 10 (3 mod 8) = 3
2622, 25eqtr4di 2228 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = (3 mod 8))
27 simprr 531 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = 3)
2827, 25eqtr4di 2228 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = (3 mod 8))
2913, 15, 16, 15, 19, 21, 26, 28modqmul12d 10364 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → ((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8))
3029orcd 733 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
3130ex 115 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
32 simpll 527 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 𝐴 ∈ ℤ)
33 znegcl 9273 . . . . . . . . . . 11 (3 ∈ ℤ → -3 ∈ ℤ)
3414, 33mp1i 10 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → -3 ∈ ℤ)
35 simplr 528 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 𝐵 ∈ ℤ)
3614a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 3 ∈ ℤ)
3718a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 8 ∈ ℚ)
3820a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 0 < 8)
39 simprl 529 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = 5)
4024simpri 113 . . . . . . . . . . 11 (-3 mod 8) = 5
4139, 40eqtr4di 2228 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = (-3 mod 8))
42 simprr 531 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = 3)
4342, 25eqtr4di 2228 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = (3 mod 8))
4432, 34, 35, 36, 37, 38, 41, 43modqmul12d 10364 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → ((𝐴 · 𝐵) mod 8) = ((-3 · 3) mod 8))
45 3cn 8983 . . . . . . . . . . 11 3 ∈ ℂ
4645, 45mulneg1i 8351 . . . . . . . . . 10 (-3 · 3) = -(3 · 3)
4746oveq1i 5879 . . . . . . . . 9 ((-3 · 3) mod 8) = (-(3 · 3) mod 8)
4844, 47eqtrdi 2226 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))
4948olcd 734 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
5049ex 115 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
51 simpll 527 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 𝐴 ∈ ℤ)
5214a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 3 ∈ ℤ)
53 simplr 528 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 𝐵 ∈ ℤ)
5414, 33mp1i 10 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → -3 ∈ ℤ)
5518a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 8 ∈ ℚ)
5620a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 0 < 8)
57 simprl 529 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = 3)
5857, 25eqtr4di 2228 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = (3 mod 8))
59 simprr 531 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = 5)
6059, 40eqtr4di 2228 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = (-3 mod 8))
6151, 52, 53, 54, 55, 56, 58, 60modqmul12d 10364 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = ((3 · -3) mod 8))
6245, 45mulneg2i 8352 . . . . . . . . . 10 (3 · -3) = -(3 · 3)
6362oveq1i 5879 . . . . . . . . 9 ((3 · -3) mod 8) = (-(3 · 3) mod 8)
6461, 63eqtrdi 2226 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))
6564olcd 734 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
6665ex 115 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
67 simpll 527 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 𝐴 ∈ ℤ)
6814, 33mp1i 10 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → -3 ∈ ℤ)
69 simplr 528 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 𝐵 ∈ ℤ)
7018a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 8 ∈ ℚ)
7120a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 0 < 8)
72 simprl 529 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = 5)
7372, 40eqtr4di 2228 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = (-3 mod 8))
74 simprr 531 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = 5)
7574, 40eqtr4di 2228 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = (-3 mod 8))
7667, 68, 69, 68, 70, 71, 73, 75modqmul12d 10364 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = ((-3 · -3) mod 8))
7745, 45mul2negi 8353 . . . . . . . . . 10 (-3 · -3) = (3 · 3)
7877oveq1i 5879 . . . . . . . . 9 ((-3 · -3) mod 8) = ((3 · 3) mod 8)
7976, 78eqtrdi 2226 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8))
8079orcd 733 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
8180ex 115 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
8231, 50, 66, 81ccased 965 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((((𝐴 mod 8) = 3 ∨ (𝐴 mod 8) = 5) ∧ ((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
8312, 82sylbid 150 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5}) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
8483imp 124 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
85 simpll 527 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → 𝐴 ∈ ℤ)
86 simplr 528 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → 𝐵 ∈ ℤ)
8785, 86zmulcld 9370 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → (𝐴 · 𝐵) ∈ ℤ)
881a1i 9 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → 8 ∈ ℕ)
8987, 88zmodcld 10331 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ ℕ0)
90 elprg 3611 . . . 4 (((𝐴 · 𝐵) mod 8) ∈ ℕ0 → (((𝐴 · 𝐵) mod 8) ∈ {((3 · 3) mod 8), (-(3 · 3) mod 8)} ↔ (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
9189, 90syl 14 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → (((𝐴 · 𝐵) mod 8) ∈ {((3 · 3) mod 8), (-(3 · 3) mod 8)} ↔ (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
9284, 91mpbird 167 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {((3 · 3) mod 8), (-(3 · 3) mod 8)})
93 df-9 8974 . . . . . . . 8 9 = (8 + 1)
94 8cn 8994 . . . . . . . . 9 8 ∈ ℂ
95 ax-1cn 7895 . . . . . . . . 9 1 ∈ ℂ
9694, 95addcomi 8091 . . . . . . . 8 (8 + 1) = (1 + 8)
9793, 96eqtri 2198 . . . . . . 7 9 = (1 + 8)
98 3t3e9 9065 . . . . . . 7 (3 · 3) = 9
9994mulid2i 7951 . . . . . . . 8 (1 · 8) = 8
10099oveq2i 5880 . . . . . . 7 (1 + (1 · 8)) = (1 + 8)
10197, 98, 1003eqtr4i 2208 . . . . . 6 (3 · 3) = (1 + (1 · 8))
102101oveq1i 5879 . . . . 5 ((3 · 3) mod 8) = ((1 + (1 · 8)) mod 8)
103 1nn 8919 . . . . . . 7 1 ∈ ℕ
104 nnq 9622 . . . . . . 7 (1 ∈ ℕ → 1 ∈ ℚ)
105103, 104ax-mp 5 . . . . . 6 1 ∈ ℚ
106 1z 9268 . . . . . 6 1 ∈ ℤ
107 modqcyc 10345 . . . . . 6 (((1 ∈ ℚ ∧ 1 ∈ ℤ) ∧ (8 ∈ ℚ ∧ 0 < 8)) → ((1 + (1 · 8)) mod 8) = (1 mod 8))
108105, 106, 18, 20, 107mp4an 427 . . . . 5 ((1 + (1 · 8)) mod 8) = (1 mod 8)
109102, 108eqtri 2198 . . . 4 ((3 · 3) mod 8) = (1 mod 8)
11023simpli 111 . . . . 5 ((1 mod 8) = 1 ∧ (-1 mod 8) = 7)
111110simpli 111 . . . 4 (1 mod 8) = 1
112109, 111eqtri 2198 . . 3 ((3 · 3) mod 8) = 1
113 znegcl 9273 . . . . . . . 8 (1 ∈ ℤ → -1 ∈ ℤ)
114106, 113mp1i 10 . . . . . . 7 (⊤ → -1 ∈ ℤ)
115 3nn 9070 . . . . . . . . . 10 3 ∈ ℕ
116115, 115nnmulcli 8930 . . . . . . . . 9 (3 · 3) ∈ ℕ
117116nnzi 9263 . . . . . . . 8 (3 · 3) ∈ ℤ
118117a1i 9 . . . . . . 7 (⊤ → (3 · 3) ∈ ℤ)
119106a1i 9 . . . . . . 7 (⊤ → 1 ∈ ℤ)
12018a1i 9 . . . . . . 7 (⊤ → 8 ∈ ℚ)
12120a1i 9 . . . . . . 7 (⊤ → 0 < 8)
122 eqidd 2178 . . . . . . 7 (⊤ → (-1 mod 8) = (-1 mod 8))
123109a1i 9 . . . . . . 7 (⊤ → ((3 · 3) mod 8) = (1 mod 8))
124114, 114, 118, 119, 120, 121, 122, 123modqmul12d 10364 . . . . . 6 (⊤ → ((-1 · (3 · 3)) mod 8) = ((-1 · 1) mod 8))
125124mptru 1362 . . . . 5 ((-1 · (3 · 3)) mod 8) = ((-1 · 1) mod 8)
12645, 45mulcli 7953 . . . . . . 7 (3 · 3) ∈ ℂ
127126mulm1i 8350 . . . . . 6 (-1 · (3 · 3)) = -(3 · 3)
128127oveq1i 5879 . . . . 5 ((-1 · (3 · 3)) mod 8) = (-(3 · 3) mod 8)
12995mulm1i 8350 . . . . . 6 (-1 · 1) = -1
130129oveq1i 5879 . . . . 5 ((-1 · 1) mod 8) = (-1 mod 8)
131125, 128, 1303eqtr3i 2206 . . . 4 (-(3 · 3) mod 8) = (-1 mod 8)
132110simpri 113 . . . 4 (-1 mod 8) = 7
133131, 132eqtri 2198 . . 3 (-(3 · 3) mod 8) = 7
134112, 133preq12i 3673 . 2 {((3 · 3) mod 8), (-(3 · 3) mod 8)} = {1, 7}
13592, 134eleqtrdi 2270 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wtru 1354  wcel 2148  {cpr 3592   class class class wbr 4000  (class class class)co 5869  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807   < clt 7982  -cneg 8119  cn 8908  3c3 8960  5c5 8962  7c7 8964  8c8 8965  9c9 8966  0cn0 9165  cz 9242  cq 9608   mod cmo 10308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-5 8970  df-6 8971  df-7 8972  df-8 8973  df-9 8974  df-n0 9166  df-z 9243  df-q 9609  df-rp 9641  df-fl 10256  df-mod 10309
This theorem is referenced by:  lgsdir2  14101
  Copyright terms: Public domain W3C validator