ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir2lem5 GIF version

Theorem lgsdir2lem5 15553
Description: Lemma for lgsdir2 15554. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2lem5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})

Proof of Theorem lgsdir2lem5
StepHypRef Expression
1 8nn 9211 . . . . . . . . 9 8 ∈ ℕ
2 zmodcl 10496 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 8 ∈ ℕ) → (𝐴 mod 8) ∈ ℕ0)
31, 2mpan2 425 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 mod 8) ∈ ℕ0)
43adantr 276 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 mod 8) ∈ ℕ0)
5 elprg 3654 . . . . . . 7 ((𝐴 mod 8) ∈ ℕ0 → ((𝐴 mod 8) ∈ {3, 5} ↔ ((𝐴 mod 8) = 3 ∨ (𝐴 mod 8) = 5)))
64, 5syl 14 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 8) ∈ {3, 5} ↔ ((𝐴 mod 8) = 3 ∨ (𝐴 mod 8) = 5)))
7 zmodcl 10496 . . . . . . . . 9 ((𝐵 ∈ ℤ ∧ 8 ∈ ℕ) → (𝐵 mod 8) ∈ ℕ0)
81, 7mpan2 425 . . . . . . . 8 (𝐵 ∈ ℤ → (𝐵 mod 8) ∈ ℕ0)
98adantl 277 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 mod 8) ∈ ℕ0)
10 elprg 3654 . . . . . . 7 ((𝐵 mod 8) ∈ ℕ0 → ((𝐵 mod 8) ∈ {3, 5} ↔ ((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5)))
119, 10syl 14 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐵 mod 8) ∈ {3, 5} ↔ ((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5)))
126, 11anbi12d 473 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5}) ↔ (((𝐴 mod 8) = 3 ∨ (𝐴 mod 8) = 5) ∧ ((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5))))
13 simpll 527 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 𝐴 ∈ ℤ)
14 3z 9408 . . . . . . . . . 10 3 ∈ ℤ
1514a1i 9 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 3 ∈ ℤ)
16 simplr 528 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 𝐵 ∈ ℤ)
17 nnq 9761 . . . . . . . . . . 11 (8 ∈ ℕ → 8 ∈ ℚ)
181, 17ax-mp 5 . . . . . . . . . 10 8 ∈ ℚ
1918a1i 9 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 8 ∈ ℚ)
20 8pos 9146 . . . . . . . . . 10 0 < 8
2120a1i 9 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 0 < 8)
22 simprl 529 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = 3)
23 lgsdir2lem1 15549 . . . . . . . . . . . 12 (((1 mod 8) = 1 ∧ (-1 mod 8) = 7) ∧ ((3 mod 8) = 3 ∧ (-3 mod 8) = 5))
2423simpri 113 . . . . . . . . . . 11 ((3 mod 8) = 3 ∧ (-3 mod 8) = 5)
2524simpli 111 . . . . . . . . . 10 (3 mod 8) = 3
2622, 25eqtr4di 2257 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = (3 mod 8))
27 simprr 531 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = 3)
2827, 25eqtr4di 2257 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = (3 mod 8))
2913, 15, 16, 15, 19, 21, 26, 28modqmul12d 10530 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → ((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8))
3029orcd 735 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
3130ex 115 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
32 simpll 527 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 𝐴 ∈ ℤ)
33 znegcl 9410 . . . . . . . . . . 11 (3 ∈ ℤ → -3 ∈ ℤ)
3414, 33mp1i 10 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → -3 ∈ ℤ)
35 simplr 528 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 𝐵 ∈ ℤ)
3614a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 3 ∈ ℤ)
3718a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 8 ∈ ℚ)
3820a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 0 < 8)
39 simprl 529 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = 5)
4024simpri 113 . . . . . . . . . . 11 (-3 mod 8) = 5
4139, 40eqtr4di 2257 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = (-3 mod 8))
42 simprr 531 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = 3)
4342, 25eqtr4di 2257 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = (3 mod 8))
4432, 34, 35, 36, 37, 38, 41, 43modqmul12d 10530 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → ((𝐴 · 𝐵) mod 8) = ((-3 · 3) mod 8))
45 3cn 9118 . . . . . . . . . . 11 3 ∈ ℂ
4645, 45mulneg1i 8483 . . . . . . . . . 10 (-3 · 3) = -(3 · 3)
4746oveq1i 5961 . . . . . . . . 9 ((-3 · 3) mod 8) = (-(3 · 3) mod 8)
4844, 47eqtrdi 2255 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))
4948olcd 736 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
5049ex 115 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
51 simpll 527 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 𝐴 ∈ ℤ)
5214a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 3 ∈ ℤ)
53 simplr 528 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 𝐵 ∈ ℤ)
5414, 33mp1i 10 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → -3 ∈ ℤ)
5518a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 8 ∈ ℚ)
5620a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 0 < 8)
57 simprl 529 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = 3)
5857, 25eqtr4di 2257 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = (3 mod 8))
59 simprr 531 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = 5)
6059, 40eqtr4di 2257 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = (-3 mod 8))
6151, 52, 53, 54, 55, 56, 58, 60modqmul12d 10530 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = ((3 · -3) mod 8))
6245, 45mulneg2i 8484 . . . . . . . . . 10 (3 · -3) = -(3 · 3)
6362oveq1i 5961 . . . . . . . . 9 ((3 · -3) mod 8) = (-(3 · 3) mod 8)
6461, 63eqtrdi 2255 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))
6564olcd 736 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
6665ex 115 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
67 simpll 527 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 𝐴 ∈ ℤ)
6814, 33mp1i 10 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → -3 ∈ ℤ)
69 simplr 528 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 𝐵 ∈ ℤ)
7018a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 8 ∈ ℚ)
7120a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 0 < 8)
72 simprl 529 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = 5)
7372, 40eqtr4di 2257 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = (-3 mod 8))
74 simprr 531 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = 5)
7574, 40eqtr4di 2257 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = (-3 mod 8))
7667, 68, 69, 68, 70, 71, 73, 75modqmul12d 10530 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = ((-3 · -3) mod 8))
7745, 45mul2negi 8485 . . . . . . . . . 10 (-3 · -3) = (3 · 3)
7877oveq1i 5961 . . . . . . . . 9 ((-3 · -3) mod 8) = ((3 · 3) mod 8)
7976, 78eqtrdi 2255 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8))
8079orcd 735 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
8180ex 115 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
8231, 50, 66, 81ccased 968 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((((𝐴 mod 8) = 3 ∨ (𝐴 mod 8) = 5) ∧ ((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
8312, 82sylbid 150 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5}) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
8483imp 124 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
85 simpll 527 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → 𝐴 ∈ ℤ)
86 simplr 528 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → 𝐵 ∈ ℤ)
8785, 86zmulcld 9508 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → (𝐴 · 𝐵) ∈ ℤ)
881a1i 9 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → 8 ∈ ℕ)
8987, 88zmodcld 10497 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ ℕ0)
90 elprg 3654 . . . 4 (((𝐴 · 𝐵) mod 8) ∈ ℕ0 → (((𝐴 · 𝐵) mod 8) ∈ {((3 · 3) mod 8), (-(3 · 3) mod 8)} ↔ (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
9189, 90syl 14 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → (((𝐴 · 𝐵) mod 8) ∈ {((3 · 3) mod 8), (-(3 · 3) mod 8)} ↔ (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
9284, 91mpbird 167 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {((3 · 3) mod 8), (-(3 · 3) mod 8)})
93 df-9 9109 . . . . . . . 8 9 = (8 + 1)
94 8cn 9129 . . . . . . . . 9 8 ∈ ℂ
95 ax-1cn 8025 . . . . . . . . 9 1 ∈ ℂ
9694, 95addcomi 8223 . . . . . . . 8 (8 + 1) = (1 + 8)
9793, 96eqtri 2227 . . . . . . 7 9 = (1 + 8)
98 3t3e9 9201 . . . . . . 7 (3 · 3) = 9
9994mullidi 8082 . . . . . . . 8 (1 · 8) = 8
10099oveq2i 5962 . . . . . . 7 (1 + (1 · 8)) = (1 + 8)
10197, 98, 1003eqtr4i 2237 . . . . . 6 (3 · 3) = (1 + (1 · 8))
102101oveq1i 5961 . . . . 5 ((3 · 3) mod 8) = ((1 + (1 · 8)) mod 8)
103 1nn 9054 . . . . . . 7 1 ∈ ℕ
104 nnq 9761 . . . . . . 7 (1 ∈ ℕ → 1 ∈ ℚ)
105103, 104ax-mp 5 . . . . . 6 1 ∈ ℚ
106 1z 9405 . . . . . 6 1 ∈ ℤ
107 modqcyc 10511 . . . . . 6 (((1 ∈ ℚ ∧ 1 ∈ ℤ) ∧ (8 ∈ ℚ ∧ 0 < 8)) → ((1 + (1 · 8)) mod 8) = (1 mod 8))
108105, 106, 18, 20, 107mp4an 427 . . . . 5 ((1 + (1 · 8)) mod 8) = (1 mod 8)
109102, 108eqtri 2227 . . . 4 ((3 · 3) mod 8) = (1 mod 8)
11023simpli 111 . . . . 5 ((1 mod 8) = 1 ∧ (-1 mod 8) = 7)
111110simpli 111 . . . 4 (1 mod 8) = 1
112109, 111eqtri 2227 . . 3 ((3 · 3) mod 8) = 1
113 znegcl 9410 . . . . . . . 8 (1 ∈ ℤ → -1 ∈ ℤ)
114106, 113mp1i 10 . . . . . . 7 (⊤ → -1 ∈ ℤ)
115 3nn 9206 . . . . . . . . . 10 3 ∈ ℕ
116115, 115nnmulcli 9065 . . . . . . . . 9 (3 · 3) ∈ ℕ
117116nnzi 9400 . . . . . . . 8 (3 · 3) ∈ ℤ
118117a1i 9 . . . . . . 7 (⊤ → (3 · 3) ∈ ℤ)
119106a1i 9 . . . . . . 7 (⊤ → 1 ∈ ℤ)
12018a1i 9 . . . . . . 7 (⊤ → 8 ∈ ℚ)
12120a1i 9 . . . . . . 7 (⊤ → 0 < 8)
122 eqidd 2207 . . . . . . 7 (⊤ → (-1 mod 8) = (-1 mod 8))
123109a1i 9 . . . . . . 7 (⊤ → ((3 · 3) mod 8) = (1 mod 8))
124114, 114, 118, 119, 120, 121, 122, 123modqmul12d 10530 . . . . . 6 (⊤ → ((-1 · (3 · 3)) mod 8) = ((-1 · 1) mod 8))
125124mptru 1382 . . . . 5 ((-1 · (3 · 3)) mod 8) = ((-1 · 1) mod 8)
12645, 45mulcli 8084 . . . . . . 7 (3 · 3) ∈ ℂ
127126mulm1i 8482 . . . . . 6 (-1 · (3 · 3)) = -(3 · 3)
128127oveq1i 5961 . . . . 5 ((-1 · (3 · 3)) mod 8) = (-(3 · 3) mod 8)
12995mulm1i 8482 . . . . . 6 (-1 · 1) = -1
130129oveq1i 5961 . . . . 5 ((-1 · 1) mod 8) = (-1 mod 8)
131125, 128, 1303eqtr3i 2235 . . . 4 (-(3 · 3) mod 8) = (-1 mod 8)
132110simpri 113 . . . 4 (-1 mod 8) = 7
133131, 132eqtri 2227 . . 3 (-(3 · 3) mod 8) = 7
134112, 133preq12i 3716 . 2 {((3 · 3) mod 8), (-(3 · 3) mod 8)} = {1, 7}
13592, 134eleqtrdi 2299 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wtru 1374  wcel 2177  {cpr 3635   class class class wbr 4047  (class class class)co 5951  0cc0 7932  1c1 7933   + caddc 7935   · cmul 7937   < clt 8114  -cneg 8251  cn 9043  3c3 9095  5c5 9097  7c7 9099  8c8 9100  9c9 9101  0cn0 9302  cz 9379  cq 9747   mod cmo 10474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-po 4347  df-iso 4348  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-z 9380  df-q 9748  df-rp 9783  df-fl 10420  df-mod 10475
This theorem is referenced by:  lgsdir2  15554
  Copyright terms: Public domain W3C validator