ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir2lem5 GIF version

Theorem lgsdir2lem5 15676
Description: Lemma for lgsdir2 15677. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2lem5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})

Proof of Theorem lgsdir2lem5
StepHypRef Expression
1 8nn 9246 . . . . . . . . 9 8 ∈ ℕ
2 zmodcl 10533 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 8 ∈ ℕ) → (𝐴 mod 8) ∈ ℕ0)
31, 2mpan2 425 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 mod 8) ∈ ℕ0)
43adantr 276 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 mod 8) ∈ ℕ0)
5 elprg 3666 . . . . . . 7 ((𝐴 mod 8) ∈ ℕ0 → ((𝐴 mod 8) ∈ {3, 5} ↔ ((𝐴 mod 8) = 3 ∨ (𝐴 mod 8) = 5)))
64, 5syl 14 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 8) ∈ {3, 5} ↔ ((𝐴 mod 8) = 3 ∨ (𝐴 mod 8) = 5)))
7 zmodcl 10533 . . . . . . . . 9 ((𝐵 ∈ ℤ ∧ 8 ∈ ℕ) → (𝐵 mod 8) ∈ ℕ0)
81, 7mpan2 425 . . . . . . . 8 (𝐵 ∈ ℤ → (𝐵 mod 8) ∈ ℕ0)
98adantl 277 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 mod 8) ∈ ℕ0)
10 elprg 3666 . . . . . . 7 ((𝐵 mod 8) ∈ ℕ0 → ((𝐵 mod 8) ∈ {3, 5} ↔ ((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5)))
119, 10syl 14 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐵 mod 8) ∈ {3, 5} ↔ ((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5)))
126, 11anbi12d 473 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5}) ↔ (((𝐴 mod 8) = 3 ∨ (𝐴 mod 8) = 5) ∧ ((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5))))
13 simpll 527 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 𝐴 ∈ ℤ)
14 3z 9443 . . . . . . . . . 10 3 ∈ ℤ
1514a1i 9 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 3 ∈ ℤ)
16 simplr 528 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 𝐵 ∈ ℤ)
17 nnq 9796 . . . . . . . . . . 11 (8 ∈ ℕ → 8 ∈ ℚ)
181, 17ax-mp 5 . . . . . . . . . 10 8 ∈ ℚ
1918a1i 9 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 8 ∈ ℚ)
20 8pos 9181 . . . . . . . . . 10 0 < 8
2120a1i 9 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 0 < 8)
22 simprl 529 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = 3)
23 lgsdir2lem1 15672 . . . . . . . . . . . 12 (((1 mod 8) = 1 ∧ (-1 mod 8) = 7) ∧ ((3 mod 8) = 3 ∧ (-3 mod 8) = 5))
2423simpri 113 . . . . . . . . . . 11 ((3 mod 8) = 3 ∧ (-3 mod 8) = 5)
2524simpli 111 . . . . . . . . . 10 (3 mod 8) = 3
2622, 25eqtr4di 2260 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = (3 mod 8))
27 simprr 531 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = 3)
2827, 25eqtr4di 2260 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = (3 mod 8))
2913, 15, 16, 15, 19, 21, 26, 28modqmul12d 10567 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → ((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8))
3029orcd 737 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
3130ex 115 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
32 simpll 527 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 𝐴 ∈ ℤ)
33 znegcl 9445 . . . . . . . . . . 11 (3 ∈ ℤ → -3 ∈ ℤ)
3414, 33mp1i 10 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → -3 ∈ ℤ)
35 simplr 528 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 𝐵 ∈ ℤ)
3614a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 3 ∈ ℤ)
3718a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 8 ∈ ℚ)
3820a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 0 < 8)
39 simprl 529 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = 5)
4024simpri 113 . . . . . . . . . . 11 (-3 mod 8) = 5
4139, 40eqtr4di 2260 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = (-3 mod 8))
42 simprr 531 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = 3)
4342, 25eqtr4di 2260 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = (3 mod 8))
4432, 34, 35, 36, 37, 38, 41, 43modqmul12d 10567 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → ((𝐴 · 𝐵) mod 8) = ((-3 · 3) mod 8))
45 3cn 9153 . . . . . . . . . . 11 3 ∈ ℂ
4645, 45mulneg1i 8518 . . . . . . . . . 10 (-3 · 3) = -(3 · 3)
4746oveq1i 5984 . . . . . . . . 9 ((-3 · 3) mod 8) = (-(3 · 3) mod 8)
4844, 47eqtrdi 2258 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))
4948olcd 738 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
5049ex 115 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
51 simpll 527 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 𝐴 ∈ ℤ)
5214a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 3 ∈ ℤ)
53 simplr 528 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 𝐵 ∈ ℤ)
5414, 33mp1i 10 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → -3 ∈ ℤ)
5518a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 8 ∈ ℚ)
5620a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 0 < 8)
57 simprl 529 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = 3)
5857, 25eqtr4di 2260 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = (3 mod 8))
59 simprr 531 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = 5)
6059, 40eqtr4di 2260 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = (-3 mod 8))
6151, 52, 53, 54, 55, 56, 58, 60modqmul12d 10567 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = ((3 · -3) mod 8))
6245, 45mulneg2i 8519 . . . . . . . . . 10 (3 · -3) = -(3 · 3)
6362oveq1i 5984 . . . . . . . . 9 ((3 · -3) mod 8) = (-(3 · 3) mod 8)
6461, 63eqtrdi 2258 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))
6564olcd 738 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
6665ex 115 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
67 simpll 527 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 𝐴 ∈ ℤ)
6814, 33mp1i 10 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → -3 ∈ ℤ)
69 simplr 528 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 𝐵 ∈ ℤ)
7018a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 8 ∈ ℚ)
7120a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 0 < 8)
72 simprl 529 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = 5)
7372, 40eqtr4di 2260 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = (-3 mod 8))
74 simprr 531 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = 5)
7574, 40eqtr4di 2260 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = (-3 mod 8))
7667, 68, 69, 68, 70, 71, 73, 75modqmul12d 10567 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = ((-3 · -3) mod 8))
7745, 45mul2negi 8520 . . . . . . . . . 10 (-3 · -3) = (3 · 3)
7877oveq1i 5984 . . . . . . . . 9 ((-3 · -3) mod 8) = ((3 · 3) mod 8)
7976, 78eqtrdi 2258 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8))
8079orcd 737 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
8180ex 115 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
8231, 50, 66, 81ccased 970 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((((𝐴 mod 8) = 3 ∨ (𝐴 mod 8) = 5) ∧ ((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
8312, 82sylbid 150 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5}) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
8483imp 124 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
85 simpll 527 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → 𝐴 ∈ ℤ)
86 simplr 528 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → 𝐵 ∈ ℤ)
8785, 86zmulcld 9543 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → (𝐴 · 𝐵) ∈ ℤ)
881a1i 9 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → 8 ∈ ℕ)
8987, 88zmodcld 10534 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ ℕ0)
90 elprg 3666 . . . 4 (((𝐴 · 𝐵) mod 8) ∈ ℕ0 → (((𝐴 · 𝐵) mod 8) ∈ {((3 · 3) mod 8), (-(3 · 3) mod 8)} ↔ (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
9189, 90syl 14 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → (((𝐴 · 𝐵) mod 8) ∈ {((3 · 3) mod 8), (-(3 · 3) mod 8)} ↔ (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
9284, 91mpbird 167 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {((3 · 3) mod 8), (-(3 · 3) mod 8)})
93 df-9 9144 . . . . . . . 8 9 = (8 + 1)
94 8cn 9164 . . . . . . . . 9 8 ∈ ℂ
95 ax-1cn 8060 . . . . . . . . 9 1 ∈ ℂ
9694, 95addcomi 8258 . . . . . . . 8 (8 + 1) = (1 + 8)
9793, 96eqtri 2230 . . . . . . 7 9 = (1 + 8)
98 3t3e9 9236 . . . . . . 7 (3 · 3) = 9
9994mullidi 8117 . . . . . . . 8 (1 · 8) = 8
10099oveq2i 5985 . . . . . . 7 (1 + (1 · 8)) = (1 + 8)
10197, 98, 1003eqtr4i 2240 . . . . . 6 (3 · 3) = (1 + (1 · 8))
102101oveq1i 5984 . . . . 5 ((3 · 3) mod 8) = ((1 + (1 · 8)) mod 8)
103 1nn 9089 . . . . . . 7 1 ∈ ℕ
104 nnq 9796 . . . . . . 7 (1 ∈ ℕ → 1 ∈ ℚ)
105103, 104ax-mp 5 . . . . . 6 1 ∈ ℚ
106 1z 9440 . . . . . 6 1 ∈ ℤ
107 modqcyc 10548 . . . . . 6 (((1 ∈ ℚ ∧ 1 ∈ ℤ) ∧ (8 ∈ ℚ ∧ 0 < 8)) → ((1 + (1 · 8)) mod 8) = (1 mod 8))
108105, 106, 18, 20, 107mp4an 427 . . . . 5 ((1 + (1 · 8)) mod 8) = (1 mod 8)
109102, 108eqtri 2230 . . . 4 ((3 · 3) mod 8) = (1 mod 8)
11023simpli 111 . . . . 5 ((1 mod 8) = 1 ∧ (-1 mod 8) = 7)
111110simpli 111 . . . 4 (1 mod 8) = 1
112109, 111eqtri 2230 . . 3 ((3 · 3) mod 8) = 1
113 znegcl 9445 . . . . . . . 8 (1 ∈ ℤ → -1 ∈ ℤ)
114106, 113mp1i 10 . . . . . . 7 (⊤ → -1 ∈ ℤ)
115 3nn 9241 . . . . . . . . . 10 3 ∈ ℕ
116115, 115nnmulcli 9100 . . . . . . . . 9 (3 · 3) ∈ ℕ
117116nnzi 9435 . . . . . . . 8 (3 · 3) ∈ ℤ
118117a1i 9 . . . . . . 7 (⊤ → (3 · 3) ∈ ℤ)
119106a1i 9 . . . . . . 7 (⊤ → 1 ∈ ℤ)
12018a1i 9 . . . . . . 7 (⊤ → 8 ∈ ℚ)
12120a1i 9 . . . . . . 7 (⊤ → 0 < 8)
122 eqidd 2210 . . . . . . 7 (⊤ → (-1 mod 8) = (-1 mod 8))
123109a1i 9 . . . . . . 7 (⊤ → ((3 · 3) mod 8) = (1 mod 8))
124114, 114, 118, 119, 120, 121, 122, 123modqmul12d 10567 . . . . . 6 (⊤ → ((-1 · (3 · 3)) mod 8) = ((-1 · 1) mod 8))
125124mptru 1384 . . . . 5 ((-1 · (3 · 3)) mod 8) = ((-1 · 1) mod 8)
12645, 45mulcli 8119 . . . . . . 7 (3 · 3) ∈ ℂ
127126mulm1i 8517 . . . . . 6 (-1 · (3 · 3)) = -(3 · 3)
128127oveq1i 5984 . . . . 5 ((-1 · (3 · 3)) mod 8) = (-(3 · 3) mod 8)
12995mulm1i 8517 . . . . . 6 (-1 · 1) = -1
130129oveq1i 5984 . . . . 5 ((-1 · 1) mod 8) = (-1 mod 8)
131125, 128, 1303eqtr3i 2238 . . . 4 (-(3 · 3) mod 8) = (-1 mod 8)
132110simpri 113 . . . 4 (-1 mod 8) = 7
133131, 132eqtri 2230 . . 3 (-(3 · 3) mod 8) = 7
134112, 133preq12i 3728 . 2 {((3 · 3) mod 8), (-(3 · 3) mod 8)} = {1, 7}
13592, 134eleqtrdi 2302 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 712   = wceq 1375  wtru 1376  wcel 2180  {cpr 3647   class class class wbr 4062  (class class class)co 5974  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972   < clt 8149  -cneg 8286  cn 9078  3c3 9130  5c5 9132  7c7 9134  8c8 9135  9c9 9136  0cn0 9337  cz 9414  cq 9782   mod cmo 10511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-q 9783  df-rp 9818  df-fl 10457  df-mod 10512
This theorem is referenced by:  lgsdir2  15677
  Copyright terms: Public domain W3C validator