| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > celaront | GIF version | ||
| Description: "Celaront", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, all 𝜒 is 𝜑, and some 𝜒 exist, therefore some 𝜒 is not 𝜓. (In Aristotelian notation, EAO-1: MeP and SaM therefore SoP.) For example, given "No reptiles have fur", "All snakes are reptiles.", and "Snakes exist.", prove "Some snakes have no fur". Note the existence hypothesis. Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 27-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.) |
| Ref | Expression |
|---|---|
| celaront.maj | ⊢ ∀𝑥(𝜑 → ¬ 𝜓) |
| celaront.min | ⊢ ∀𝑥(𝜒 → 𝜑) |
| celaront.e | ⊢ ∃𝑥𝜒 |
| Ref | Expression |
|---|---|
| celaront | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | celaront.maj | . 2 ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | |
| 2 | celaront.min | . 2 ⊢ ∀𝑥(𝜒 → 𝜑) | |
| 3 | celaront.e | . 2 ⊢ ∃𝑥𝜒 | |
| 4 | 1, 2, 3 | barbari 2160 | 1 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1373 ∃wex 1518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-4 1536 ax-ial 1560 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |