ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  celaront GIF version

Theorem celaront 2117
Description: "Celaront", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, all 𝜒 is 𝜑, and some 𝜒 exist, therefore some 𝜒 is not 𝜓. (In Aristotelian notation, EAO-1: MeP and SaM therefore SoP.) For example, given "No reptiles have fur", "All snakes are reptiles.", and "Snakes exist.", prove "Some snakes have no fur". Note the existence hypothesis. Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 27-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
celaront.maj 𝑥(𝜑 → ¬ 𝜓)
celaront.min 𝑥(𝜒𝜑)
celaront.e 𝑥𝜒
Assertion
Ref Expression
celaront 𝑥(𝜒 ∧ ¬ 𝜓)

Proof of Theorem celaront
StepHypRef Expression
1 celaront.maj . 2 𝑥(𝜑 → ¬ 𝜓)
2 celaront.min . 2 𝑥(𝜒𝜑)
3 celaront.e . 2 𝑥𝜒
41, 2, 3barbari 2116 1 𝑥(𝜒 ∧ ¬ 𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wal 1341  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator