Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > celaront | GIF version |
Description: "Celaront", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, all 𝜒 is 𝜑, and some 𝜒 exist, therefore some 𝜒 is not 𝜓. (In Aristotelian notation, EAO-1: MeP and SaM therefore SoP.) For example, given "No reptiles have fur", "All snakes are reptiles.", and "Snakes exist.", prove "Some snakes have no fur". Note the existence hypothesis. Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 27-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.) |
Ref | Expression |
---|---|
celaront.maj | ⊢ ∀𝑥(𝜑 → ¬ 𝜓) |
celaront.min | ⊢ ∀𝑥(𝜒 → 𝜑) |
celaront.e | ⊢ ∃𝑥𝜒 |
Ref | Expression |
---|---|
celaront | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | celaront.maj | . 2 ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | |
2 | celaront.min | . 2 ⊢ ∀𝑥(𝜒 → 𝜑) | |
3 | celaront.e | . 2 ⊢ ∃𝑥𝜒 | |
4 | 1, 2, 3 | barbari 2108 | 1 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∀wal 1333 ∃wex 1472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |