| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > barbari | GIF version | ||
| Description: "Barbari", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, all 𝜒 is 𝜑, and some 𝜒 exist, therefore some 𝜒 is 𝜓. (In Aristotelian notation, AAI-1: MaP and SaM therefore SiP.) For example, given "All men are mortal", "All Greeks are men", and "Greeks exist", therefore "Some Greeks are mortal". Note the existence hypothesis (to prove the "some" in the conclusion). Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 27-Aug-2016.) (Revised by David A. Wheeler, 30-Aug-2016.) |
| Ref | Expression |
|---|---|
| barbari.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
| barbari.min | ⊢ ∀𝑥(𝜒 → 𝜑) |
| barbari.e | ⊢ ∃𝑥𝜒 |
| Ref | Expression |
|---|---|
| barbari | ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | barbari.e | . 2 ⊢ ∃𝑥𝜒 | |
| 2 | barbari.maj | . . . . 5 ⊢ ∀𝑥(𝜑 → 𝜓) | |
| 3 | barbari.min | . . . . 5 ⊢ ∀𝑥(𝜒 → 𝜑) | |
| 4 | 2, 3 | barbara 2152 | . . . 4 ⊢ ∀𝑥(𝜒 → 𝜓) |
| 5 | 4 | spi 1559 | . . 3 ⊢ (𝜒 → 𝜓) |
| 6 | 5 | ancli 323 | . 2 ⊢ (𝜒 → (𝜒 ∧ 𝜓)) |
| 7 | 1, 6 | eximii 1625 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 ∃wex 1515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: celaront 2157 |
| Copyright terms: Public domain | W3C validator |