| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > barbari | GIF version | ||
| Description: "Barbari", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, all 𝜒 is 𝜑, and some 𝜒 exist, therefore some 𝜒 is 𝜓. (In Aristotelian notation, AAI-1: MaP and SaM therefore SiP.) For example, given "All men are mortal", "All Greeks are men", and "Greeks exist", therefore "Some Greeks are mortal". Note the existence hypothesis (to prove the "some" in the conclusion). Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 27-Aug-2016.) (Revised by David A. Wheeler, 30-Aug-2016.) |
| Ref | Expression |
|---|---|
| barbari.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
| barbari.min | ⊢ ∀𝑥(𝜒 → 𝜑) |
| barbari.e | ⊢ ∃𝑥𝜒 |
| Ref | Expression |
|---|---|
| barbari | ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | barbari.e | . 2 ⊢ ∃𝑥𝜒 | |
| 2 | barbari.maj | . . . . 5 ⊢ ∀𝑥(𝜑 → 𝜓) | |
| 3 | barbari.min | . . . . 5 ⊢ ∀𝑥(𝜒 → 𝜑) | |
| 4 | 2, 3 | barbara 2154 | . . . 4 ⊢ ∀𝑥(𝜒 → 𝜓) |
| 5 | 4 | spi 1560 | . . 3 ⊢ (𝜒 → 𝜓) |
| 6 | 5 | ancli 323 | . 2 ⊢ (𝜒 → (𝜒 ∧ 𝜓)) |
| 7 | 1, 6 | eximii 1626 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: celaront 2159 |
| Copyright terms: Public domain | W3C validator |