![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > barbari | GIF version |
Description: "Barbari", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, all 𝜒 is 𝜑, and some 𝜒 exist, therefore some 𝜒 is 𝜓. (In Aristotelian notation, AAI-1: MaP and SaM therefore SiP.) For example, given "All men are mortal", "All Greeks are men", and "Greeks exist", therefore "Some Greeks are mortal". Note the existence hypothesis (to prove the "some" in the conclusion). Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 27-Aug-2016.) (Revised by David A. Wheeler, 30-Aug-2016.) |
Ref | Expression |
---|---|
barbari.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
barbari.min | ⊢ ∀𝑥(𝜒 → 𝜑) |
barbari.e | ⊢ ∃𝑥𝜒 |
Ref | Expression |
---|---|
barbari | ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | barbari.e | . 2 ⊢ ∃𝑥𝜒 | |
2 | barbari.maj | . . . . 5 ⊢ ∀𝑥(𝜑 → 𝜓) | |
3 | barbari.min | . . . . 5 ⊢ ∀𝑥(𝜒 → 𝜑) | |
4 | 2, 3 | barbara 2140 | . . . 4 ⊢ ∀𝑥(𝜒 → 𝜓) |
5 | 4 | spi 1547 | . . 3 ⊢ (𝜒 → 𝜓) |
6 | 5 | ancli 323 | . 2 ⊢ (𝜒 → (𝜒 ∧ 𝜓)) |
7 | 1, 6 | eximii 1613 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: celaront 2145 |
Copyright terms: Public domain | W3C validator |