| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > barbari | GIF version | ||
| Description: "Barbari", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, all 𝜒 is 𝜑, and some 𝜒 exist, therefore some 𝜒 is 𝜓. (In Aristotelian notation, AAI-1: MaP and SaM therefore SiP.) For example, given "All men are mortal", "All Greeks are men", and "Greeks exist", therefore "Some Greeks are mortal". Note the existence hypothesis (to prove the "some" in the conclusion). Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 27-Aug-2016.) (Revised by David A. Wheeler, 30-Aug-2016.) |
| Ref | Expression |
|---|---|
| barbari.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
| barbari.min | ⊢ ∀𝑥(𝜒 → 𝜑) |
| barbari.e | ⊢ ∃𝑥𝜒 |
| Ref | Expression |
|---|---|
| barbari | ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | barbari.e | . 2 ⊢ ∃𝑥𝜒 | |
| 2 | barbari.maj | . . . . 5 ⊢ ∀𝑥(𝜑 → 𝜓) | |
| 3 | barbari.min | . . . . 5 ⊢ ∀𝑥(𝜒 → 𝜑) | |
| 4 | 2, 3 | barbara 2176 | . . . 4 ⊢ ∀𝑥(𝜒 → 𝜓) |
| 5 | 4 | spi 1582 | . . 3 ⊢ (𝜒 → 𝜓) |
| 6 | 5 | ancli 323 | . 2 ⊢ (𝜒 → (𝜒 ∧ 𝜓)) |
| 7 | 1, 6 | eximii 1648 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1393 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: celaront 2181 |
| Copyright terms: Public domain | W3C validator |