ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  condc GIF version

Theorem condc 858
Description: Contraposition of a decidable proposition.

This theorem swaps or "transposes" the order of the consequents when negation is removed. An informal example is that the statement "if there are no clouds in the sky, it is not raining" implies the statement "if it is raining, there are clouds in the sky". This theorem (without the decidability condition, of course) is called Transp or "the principle of transposition" in Principia Mathematica (Theorem *2.17 of [WhiteheadRussell] p. 103) and is Axiom A3 of [Margaris] p. 49. We will also use the term "contraposition" for this principle, although the reader is advised that in the field of philosophical logic, "contraposition" has a different technical meaning.

(Contributed by Jim Kingdon, 13-Mar-2018.) (Proof shortened by BJ, 18-Nov-2023.)

Assertion
Ref Expression
condc (DECID 𝜑 → ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑)))

Proof of Theorem condc
StepHypRef Expression
1 dcstab 849 . 2 (DECID 𝜑STAB 𝜑)
2 const 857 . 2 (STAB 𝜑 → ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑)))
31, 2syl 14 1 (DECID 𝜑 → ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  STAB wstab 835  DECID wdc 839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840
This theorem is referenced by:  pm2.18dc  860  con1dc  861  con4biddc  862  pm2.521gdc  873  pm2.521dcALT  875  con34bdc  876  necon4aidc  2468  necon4addc  2470  necon4bddc  2471  necon4ddc  2472  nn0n0n1ge2b  9534  gcdeq0  12506  lcmeq0  12601  pcdvdsb  12851  pc2dvds  12861  pcfac  12881  infpnlem1  12890  m1lgs  15772
  Copyright terms: Public domain W3C validator