ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  condc GIF version

Theorem condc 857
Description: Contraposition of a decidable proposition.

This theorem swaps or "transposes" the order of the consequents when negation is removed. An informal example is that the statement "if there are no clouds in the sky, it is not raining" implies the statement "if it is raining, there are clouds in the sky". This theorem (without the decidability condition, of course) is called Transp or "the principle of transposition" in Principia Mathematica (Theorem *2.17 of [WhiteheadRussell] p. 103) and is Axiom A3 of [Margaris] p. 49. We will also use the term "contraposition" for this principle, although the reader is advised that in the field of philosophical logic, "contraposition" has a different technical meaning.

(Contributed by Jim Kingdon, 13-Mar-2018.) (Proof shortened by BJ, 18-Nov-2023.)

Assertion
Ref Expression
condc (DECID 𝜑 → ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑)))

Proof of Theorem condc
StepHypRef Expression
1 dcstab 848 . 2 (DECID 𝜑STAB 𝜑)
2 const 856 . 2 (STAB 𝜑 → ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑)))
31, 2syl 14 1 (DECID 𝜑 → ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  STAB wstab 834  DECID wdc 838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839
This theorem is referenced by:  pm2.18dc  859  con1dc  860  con4biddc  861  pm2.521gdc  872  pm2.521dcALT  874  con34bdc  875  necon4aidc  2448  necon4addc  2450  necon4bddc  2451  necon4ddc  2452  nn0n0n1ge2b  9494  gcdeq0  12464  lcmeq0  12559  pcdvdsb  12809  pc2dvds  12819  pcfac  12839  infpnlem1  12848  m1lgs  15729
  Copyright terms: Public domain W3C validator